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Why numerical relativity

Study of systems with strong and dynamical gravitational fields

@ Gravitational radiation

e Astrophysics, gravitational wave astronomy
@ Mathematical and theoretical Physics:

e Cosmic censorship

o Instabilities (Black hole interior, Myers-Perry)
@ High-energy particle systems:

@ AdS/CFT correspondence;
e Black hole production at the LHC;
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High-energy particle systems

@ Large extra dimensions scenarios:
e fundamental Planck scale could be as low as the TeV:
= at the LHC particles collide at centre of mass energies
above the fundamental Planck scale.
@ Matter does not matter: for energies above Planck scale,
E = 2fym002 > EPlanck
e gravity is the dominant force;

e internal structure of particle not important for understanding
of process.

= high energy patrticle collisions should be well described by
black hole collisions — classical general relativity.
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Black holes in compact dimensions. . .

@ arise in gauge/gravity duality and braneworld scenarios;

@ have a richer phase structure and dynamics than in
flat-space;

@ analytical tools are capable of handling only a limited class
of idealized scenarios;
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5 dimensional black holes on a cylinder
D = 5 black holes on a cylinder

In the absence of black holes, we have M3 x S':

2 _ A2 2 2 2 2 2
ds® = —dt* + dx“ + dy + y°d¢ +gz/
M1.3 81

ze[-LL], ¢ €[0,2n]
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Axial symmetry SO(D — 2) and SO(D — 3)

z z
7N
Head-on Non head-on .
Spinless Spinning g
\
SO(D -2) SO(D - 3) A
isometry isometry
L
A

@ Highly symmetric systems;

@ Can be reduced to effective 3 + 1 systems;
= We can use existing numerical codes (with adaptations);

(MZ et al 2010)
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Formalism

Most general metric element
ds? = g, dx"dx” + \dQ3_,

nw=0,1,23.
D-dimensional vacuum Einstein equations imply

D_4
R = Do <v O\ — 8MA8V>\)
VH9\ = 2(D — 5) — Qa DA

2\
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The resulting system is

(0t — L) vij = —2aKj
(81 — ﬁg) K,‘j = —D,-@,-a + o ((3)R/j + KK,‘j — 2K,‘kKkj)
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Formalism

The resulting system is

(0t — L) vij = —2aKj
(81 — ﬁg) K,‘j = —D,-@,-a + o ((3)R/j + KK,‘j — 2K,‘kKkj)

D—-4 1
ot <D8)\ 2K;Ky — 2Aa,xa,x>
(0t — L) A = —2aK),
1 1 D 6
D 6 1,
B\ aAﬁ)\—éD Ok A

— effective 3 + 1 system with source terms
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Formalism

H=R+K?—- KiK' —167E =0
M =V, (K"f—y"fK) —8rp =0
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Initial data

Brill-Lindquist initial-data

ds? =y (o + dy? + dz2) + Y242 de?
Ky=0

A

“Standard” (asymptotically flat) case

2

=1+ s
4[x2+y2+(z - a)?]

N
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Initial data

Covering Space (R):

2 € [~00,00] ‘z:u ‘ 2=2L+a

Real Space (S*) rolm -z
z€e[-L,L]

I
A
I
I
I
H-tz=-L -iz=-L
z=-20+a
2= 2L
= —2L-a
Single black hole Head on collision

Cylindrical case

2
r
-1 S
* n_zoo [x2 + y2 + (z — 2Ln)?]
mra smh s
_q14 s 2_ 2. \2
8Lp cosh 72 cos = & Y
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Constraints
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Metric falloff
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@ L = 16 head-on collision
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Trajectory

Puncture trajectory
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— longer collision time for the cylindrical case
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Conclusions

@ We reduced the head-on collision of (non-spinning) black
holes in cylindrical spacetimes (in any dimension) to an
effective 3 + 1 system with a scalar field;

@ We used this procedure to successfully evolve a black hole
in a five-dimensional cylindrical spacetime;

© We simulated a head-on collision of two black holes in a
cylindrical spacetime;
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Final remarks
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@ Study the deformation of the apparent horizon;
© Radiated energy (along the lines of Witek et al, 2010);
© Smaller compactification radius;
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