Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

Simulations of black holes in compactified spacetimes (Work in progress, Phys.Rev.D81:084052)

M. Zilhão¹ V. Cardoso L. Gualtieri C. Herdeiro A. Nerozzi U. Sperhake H. Witek

¹Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto

10th September 2010, ERE2010, Granada

(日) (日) (日) (日) (日) (日) (日)

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

Contents

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- *L* = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

Outline

- **Motivation**
- Why numerical relativity
- - Formalism
 - Initial data

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation ●○○○	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Out	line				

Motivation

Why numerical relativity

- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Dutline	Motivation	5 dimensional	black	holes	on a	ι cylinde
	0000					

Final remarks Acknowledgements

・ コット (雪) (小田) (コット 日)

Why numerical relativity

Study of systems with strong and dynamical gravitational fields

- Gravitational radiation
 - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
 - Cosmic censorship
 - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
 - AdS/CFT correspondence;
 - Black hole production at the LHC;

Dutline	Motivation	5 dimensional	black	holes	on a	a cylinder
	0000					

Final remarks Acknowledgements

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Why numerical relativity

Study of systems with strong and dynamical gravitational fields

Gravitational radiation

Astrophysics, gravitational wave astronomy

- Mathematical and theoretical Physics:
 - Cosmic censorship
 - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
 - AdS/CFT correspondence;
 - Black hole production at the LHC;

Dutline	Motivation	5 dimensional	black	holes	on a	a cylinde
	0000					

Final remarks Acknowledgements

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Why numerical relativity

Study of systems with strong and dynamical gravitational fields

- Gravitational radiation
 - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
 - Cosmic censorship
 - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
 - AdS/CFT correspondence;
 - Black hole production at the LHC;

Dutline	Motivation	5 dimensional	black	holes	a cylinde
	0000				

Final remarks Acknowledgements

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Why numerical relativity

Study of systems with strong and dynamical gravitational fields

- Gravitational radiation
 - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
 - Cosmic censorship
 - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
 - AdS/CFT correspondence;
 - Black hole production at the LHC;

Final remarks Acknowledgements

High-energy particle systems

• Large extra dimensions scenarios:

- fundamental Planck scale could be as low as the TeV:
 ⇒ at the LHC particles collide at centre of mass energies above the fundamental Planck scale.
- Matter does not matter: for energies above Planck scale, $E = 2\gamma m_0 c^2 > E_{\text{Planck}}$
 - gravity is the dominant force;
 - internal structure of particle not important for understanding of process.

High-energy particle systems

• Large extra dimensions scenarios:

- fundamental Planck scale could be as low as the TeV:
 ⇒ at the LHC particles collide at centre of mass energies above the fundamental Planck scale.
- Matter does not matter: for energies above Planck scale, $E = 2\gamma m_0 c^2 > E_{\text{Planck}}$
 - gravity is the dominant force;
 - internal structure of particle not important for understanding of process.

High-energy particle systems

- Large extra dimensions scenarios:
 - fundamental Planck scale could be as low as the TeV:
 ⇒ at the LHC particles collide at centre of mass energies above the fundamental Planck scale.
- Matter does not matter: for energies above Planck scale, $E = 2\gamma m_0 c^2 > E_{\text{Planck}}$
 - gravity is the dominant force;
 - internal structure of particle not important for understanding of process.

High-energy particle systems

- Large extra dimensions scenarios:
 - fundamental Planck scale could be as low as the TeV:
 ⇒ at the LHC particles collide at centre of mass energies above the fundamental Planck scale.
- Matter does not matter: for energies above Planck scale, $E = 2\gamma m_0 c^2 > E_{\text{Planck}}$
 - gravity is the dominant force;
 - internal structure of particle not important for understanding of process.

Final remarks Acknowledgements

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Black holes in compact dimensions...

- arise in gauge/gravity duality and braneworld scenarios;
- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

Final remarks Acknowledgements

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Black holes in compact dimensions...

arise in gauge/gravity duality and braneworld scenarios;

- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

Final remarks Acknowledgements

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Black holes in compact dimensions...

- arise in gauge/gravity duality and braneworld scenarios;
- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

Final remarks Acknowledgements

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Black holes in compact dimensions...

- arise in gauge/gravity duality and braneworld scenarios;
- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Out	line				

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation

• Why numerical relativity

2 5 dimensional black holes on a cylinder

- Formalism
- Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

D = 5 black holes on a cylinder

In the absence of black holes, we have $\mathbb{M}^{1,3}\times \mathcal{S}^1$:

$$ds^{2} = \underbrace{-dt^{2} + dx^{2} + dy^{2} + y^{2}d\phi^{2}}_{\mathbb{M}^{1,3}} + \underbrace{dz^{2}}_{S^{1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Axial symmetry SO(D-2) and SO(D-3)

- Highly symmetric systems;
- Can be reduced to effective 3 + 1 systems;

Final remarks Acknowledgements

Axial symmetry SO(D-2) and SO(D-3)

Highly symmetric systems;

• Can be reduced to effective 3 + 1 systems;

Final remarks

Acknowledgements

Axial symmetry SO(D-2) and SO(D-3)

- Highly symmetric systems;
- Can be reduced to effective 3 + 1 systems;

 \Rightarrow We can use existing numerical codes (with adaptations);

(MZ et al 2010)

Axial symmetry SO(D-2) and SO(D-3)

- Highly symmetric systems;
- Can be reduced to effective 3 + 1 systems;
 - \Rightarrow We can use existing numerical codes (with adaptations);

(MZ et al 2010)

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Outl	ine				

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation

Why numerical relativity

5 dimensional black holes on a cylinder

- Formalism
- Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Forr	nalism				

Most general metric element

$$ds^2 = g_{\mu
u} dx^{\mu} dx^{
u} + \lambda d\Omega^2_{D-4}$$

 $\mu = 0, 1, 2, 3.$ D-dimensional vacuum Einstein equations imply

$$egin{aligned} &R_{\mu
u}=rac{D-4}{2\lambda}\left(
abla_{\mu}\partial_{
u}\lambda-rac{1}{2\lambda}\partial_{\mu}\lambda\partial_{
u}\lambda
ight)\ &
abla^{\mu}\partial_{\mu}\lambda=2(D-5)-rac{D-6}{2\lambda}\partial_{\mu}\lambda\partial^{\mu}\lambda \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Forr	nalism				

Most general metric element

$$ds^2 = g_{\mu
u} dx^\mu dx^
u + \lambda d\Omega_{D-4}^2$$

 $\mu = 0, 1, 2, 3.$ *D*-dimensional vacuum Einstein equations imply

$$egin{aligned} \mathcal{R}_{\mu
u} &= rac{D-4}{2\lambda} \left(
abla_{\mu} \partial_{
u} \lambda - rac{1}{2\lambda} \partial_{\mu} \lambda \partial_{
u} \lambda
ight) \ \nabla^{\mu} \partial_{\mu} \lambda &= 2(D-5) - rac{D-6}{2\lambda} \partial_{\mu} \lambda \partial^{\mu} \lambda \end{aligned}$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ 少々で

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Forr	nalism				

The resulting system is

$$\begin{split} \left(\partial_{t} - \mathcal{L}_{\beta}\right)\gamma_{ij} &= -2\alpha K_{ij} \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{ij} &= -D_{i}\partial_{j}\alpha + \alpha \left(^{(3)}R_{ij} + KK_{ij} - 2K_{ik}K^{k}{}_{j}\right) \\ &- \alpha \frac{D-4}{2\lambda} \left(D_{i}\partial_{j}\lambda - 2K_{ij}K_{\lambda} - \frac{1}{2\lambda}\partial_{i}\lambda\partial_{j}\lambda\right) \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)\lambda &= -2\alpha K_{\lambda} \\ \frac{1}{\alpha} \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{\lambda} &= -\frac{1}{2\alpha}\partial^{i}\lambda\partial_{i}\alpha + (D-5) + KK_{\lambda} + \frac{D-6}{\lambda}K_{\lambda}^{2} \\ &- \frac{D-6}{4\lambda}\partial^{i}\lambda\partial_{i}\lambda - \frac{1}{2}D^{k}\partial_{k}\lambda \end{split}$$

ightarrow effective 3 + 1 system with source terms

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Forr	nalism				

The resulting system is

$$\begin{aligned} (\partial_t - \mathcal{L}_\beta) \gamma_{ij} &= -2\alpha K_{ij} \\ (\partial_t - \mathcal{L}_\beta) K_{ij} &= -D_i \partial_j \alpha + \alpha \left({}^{(3)} R_{ij} + K K_{ij} - 2 K_{ik} K^k{}_j \right) \\ &- \alpha \frac{D-4}{2\lambda} \left(D_i \partial_j \lambda - 2 K_{ij} K_\lambda - \frac{1}{2\lambda} \partial_i \lambda \partial_j \lambda \right) \\ (\partial_t - \mathcal{L}_\beta) \lambda &= -2\alpha K_\lambda \\ \frac{1}{\alpha} \left(\partial_t - \mathcal{L}_\beta \right) K_\lambda &= -\frac{1}{2\alpha} \partial^i \lambda \partial_i \alpha + (D-5) + K K_\lambda + \frac{D-6}{\lambda} K_\lambda^2 \\ &- \frac{D-6}{4\lambda} \partial^i \lambda \partial_i \lambda - \frac{1}{2} D^k \partial_k \lambda \end{aligned}$$

 \rightarrow effective 3 + 1 system with source terms

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Forr	nalism				

Constraints

$$\mathcal{H} \equiv \mathbf{R} + \mathbf{K}^2 - \mathbf{K}_{ij}\mathbf{K}^{ij} - \mathbf{16}\pi\mathbf{E} = \mathbf{0}$$
$$\mathcal{M}^i \equiv \nabla_j \left(\mathbf{K}^{ij} - \gamma^{ij}\mathbf{K}\right) - \mathbf{8}\pi\mathbf{p}^i = \mathbf{0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements		

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivation

Why numerical relativity

2 5 dimensional black holes on a cylinder

- Formalism
- Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Initia	al data				

Brill-Lindquist initial-data

$$ds^2 = \psi^2 \left(dx^2 + dy^2 + dz^2
ight) + y^2 \psi^2 d\phi^2$$

 $K_\lambda = 0$

"Standard" (asymptotically flat) case

$$\psi = 1 + rac{r_S^2}{4\left[x^2 + y^2 + (z - a)^2\right]}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
		000000			

Initial data

Cylindrical case

Myers 1986)

$$\psi = 1 + \sum_{n = -\infty}^{+\infty} \frac{r_S^2}{4 \left[x^2 + y^2 + (z - 2Ln)^2 \right]}$$

= $1 + \frac{\pi r_S^2}{8L\rho} \frac{\sinh \frac{\pi \rho}{L}}{\cosh \frac{\pi \rho}{L} - \cos \frac{\pi z}{L}}, \qquad \rho^2 \equiv x^2 + y^2$

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements	
Outline						

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements	
Outline						

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder

al remarks Acknow

Constraints

• The evolution is stable and the constraints are preserved

イロト イポト イヨト イヨト

Outline	Motivation	5 dimensional black holes on a cylinder

al remarks Acknow

Acknowledgements

Constraints

 The evolution is stable and the constraints are preserved

▲□▶ ▲□▶ ▲ □▶ ▲ □

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
			00000		

Metric falloff

• Recovered the expected falloff of $1 + \frac{c}{x}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements	
Metric falloff						

х

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
Out	ine				

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline Motivatio	on 5 dimensional black holes on	a cylinder Numerical results	Final remarks	Acknowledgements
		00000		

Trajectory

ightarrow longer collision time for the cylindrical case

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline Motivatio	on 5 dimensional black holes on	a cylinder Numerical results	Final remarks	Acknowledgements
		00000		

Trajectory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \rightarrow longer collision time for the cylindrical case

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

Outline

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks ●000	Acknowledgements
Outl	ine				

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks ○●○○	Acknowledgements
Con	clusio	ns			

- We reduced the head-on collision of (non-spinning) black holes in cylindrical spacetimes (in any dimension) to an effective 3 + 1 system with a scalar field;
- We used this procedure to successfully evolve a black hole in a five-dimensional cylindrical spacetime;

We simulated a head-on collision of two black holes in a cylindrical spacetime;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks ○●○○	Acknowledgements
Con	clusio	ns			

- We reduced the head-on collision of (non-spinning) black holes in cylindrical spacetimes (in any dimension) to an effective 3 + 1 system with a scalar field;
- We used this procedure to successfully evolve a black hole in a five-dimensional cylindrical spacetime;

We simulated a head-on collision of two black holes in a cylindrical spacetime;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks ○●○○	Acknowledgements
Con	clusio	ns			

- We reduced the head-on collision of (non-spinning) black holes in cylindrical spacetimes (in any dimension) to an effective 3 + 1 system with a scalar field;
- We used this procedure to successfully evolve a black hole in a five-dimensional cylindrical spacetime;

 We simulated a head-on collision of two black holes in a cylindrical spacetime;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

Outline

Motivation

- Why numerical relativity
- 2 5 dimensional black holes on a cylinder
 - Formalism
 - Initial data

3 Numerical results

- L = 32 single black hole evolution
- L = 16 head-on collision

- Conclusions
- To do

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks ○○○●	Acknowledgements
To d	0				

Study the deformation of the apparent horizon;

Padiated energy (along the lines of Witek et al, 2010);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Smaller compactification radius;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
To d	О				

- Study the deformation of the apparent horizon;
- Radiated energy (along the lines of Witek et al, 2010);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Smaller compactification radius;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements
To d	О				

- Study the deformation of the apparent horizon;
- Radiated energy (along the lines of Witek et al, 2010);

(ロ) (同) (三) (三) (三) (三) (○) (○)

Smaller compactification radius;

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

The group

Ulrich Sperhake (Caltech), Carlos Herdeiro (U. Porto), Miguel Zilhão (U. Porto – IST), Helvi Wittek (IST), Leonardo Gualtieri (Roma La Sapienza), Andrea Nerozzi (Jena - IST)

Vitor Cardoso (IST) (Vitor Cardoso, looking for black holes in higher dimensions)

http://blackholes.ist.utl.pt/

Outline	Motivation	5 dimensional black holes on a cylinder	Numerical results	Final remarks	Acknowledgements

the end