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Why numerical relativity

Study of systems with strong and dynamical gravitational fields

Gravitational radiation
Astrophysics, gravitational wave astronomy

Mathematical and theoretical Physics:
Cosmic censorship
Instabilities (Black hole interior, Myers-Perry)

High-energy particle systems:
AdS/CFT correspondence;
Black hole production at the LHC;
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High-energy particle systems

Large extra dimensions scenarios:
fundamental Planck scale could be as low as the TeV:
⇒ at the LHC particles collide at centre of mass energies
above the fundamental Planck scale.

Matter does not matter: for energies above Planck scale,
E = 2γm0c2 > EPlanck

gravity is the dominant force;
internal structure of particle not important for understanding
of process.

⇒ high energy particle collisions should be well described by
black hole collisions – classical general relativity.
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Black holes in compact dimensions. . .

arise in gauge/gravity duality and braneworld scenarios;
have a richer phase structure and dynamics than in
flat-space;
analytical tools are capable of handling only a limited class
of idealized scenarios;
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D = 5 black holes on a cylinder

In the absence of black holes, we have M1,3 × S1:

ds2 = −dt2 + dx2 + dy2 + y2dφ2︸ ︷︷ ︸
M1,3

+ dz2︸︷︷︸
S1

z ∈ [−L,L], φ ∈ [0,2π[

φ

z

y
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Axial symmetry SO(D − 2) and SO(D − 3)

z

x1, x2, . . . , xD−3

xD−2

Non head-on
Spinning

SO(D − 3)

isometry

z

x1, x2, . . . , xD−3

xD−2

Head-on
Spinless

SO(D − 2)

isometry

Highly symmetric systems;
Can be reduced to effective 3 + 1 systems;
⇒We can use existing numerical codes (with adaptations);

(MZ et al 2010)
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Formalism

Most general metric element

ds2 = gµνdxµdxν + λdΩ2
D−4

µ = 0,1,2,3.
D-dimensional vacuum Einstein equations imply

Rµν =
D − 4

2λ

(
∇µ∂νλ−

1
2λ
∂µλ∂νλ

)
∇µ∂µλ = 2(D − 5)− D − 6

2λ
∂µλ∂

µλ
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Formalism

The resulting system is

(∂t − Lβ) γij = −2αKij

(∂t − Lβ) Kij = −Di∂jα + α
(
(3)Rij + KKij − 2KikK k

j

)
− αD − 4

2λ

(
Di∂jλ− 2KijKλ −

1
2λ
∂iλ∂jλ

)
(∂t − Lβ)λ = −2αKλ

1
α

(∂t − Lβ) Kλ = − 1
2α

∂ iλ∂iα + (D − 5) + KKλ +
D − 6
λ

K 2
λ

− D − 6
4λ

∂ iλ∂iλ−
1
2

Dk∂kλ

→ effective 3 + 1 system with source terms
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Formalism

Constraints

H ≡ R + K 2 − KijK ij − 16πE = 0

Mi ≡ ∇j

(
K ij − γ ijK

)
− 8πpi = 0
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Initial data

Brill-Lindquist initial-data

ds2 = ψ2
(

dx2 + dy2 + dz2
)

+ y2ψ2dφ2

Kλ = 0

“Standard” (asymptotically flat) case

ψ = 1 +
r2
S

4
[
x2 + y2 + (z − a)2

]



Outline Motivation 5 dimensional black holes on a cylinder Numerical results Final remarks Acknowledgements

Initial data

Real Space (S1)
z ∈ [−L, L]

z = 0 z = 0

z = L

z = −L

z = 2L

z = −2L

Covering Space (R)
z ∈ [−∞,∞]

Single black hole Head on collision

z = a

z = −a

z = a

z = −a

z = L

z = −L

z = 2L+ a

z = 2L− a

z = −2L+ a

z = −2L− a

Cylindrical case (Myers 1986)

ψ = 1 +
+∞∑

n=−∞

r2
S

4
[
x2 + y2 + (z − 2Ln)2

]
= 1 +

πr2
S

8Lρ
sinh πρ

L
cosh πρ

L − cos πz
L
, ρ2 ≡ x2 + y2
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Constraints
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preserved
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Metric falloff
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Trajectory
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→ longer collision time for the cylindrical case
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Conclusions

1 We reduced the head-on collision of (non-spinning) black
holes in cylindrical spacetimes (in any dimension) to an
effective 3 + 1 system with a scalar field;

2 We used this procedure to successfully evolve a black hole
in a five-dimensional cylindrical spacetime;

3 We simulated a head-on collision of two black holes in a
cylindrical spacetime;
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To do

1 Study the deformation of the apparent horizon;
2 Radiated energy (along the lines of Witek et al, 2010);
3 Smaller compactification radius;
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The group

(Vitor Cardoso, looking for black holes in
higher dimensions)

http://blackholes.ist.utl.pt/

http://blackholes.ist.utl.pt/
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the end
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