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• Quasi-local energy flux expression for dynamically evolving

spacetime

• Flux formula to FRW cosmology where dynamical horizon is

S2 ×R and always timelike

• Cosmo horizon expands dynamically as energy flux flows through

• During exponent cosmo inflation, the energy flux through the

horizon vanishes, energy of the universe is dynamically conserved

• Duality between black-hole isolated/dynamical horizon and

cosmological isolated/dynamical horizon under spacelike and

timelike hypersurfaces interchanges

• Zeroth, First law and Effective temperature on the cosmological

horizons
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Quasi-local energy flux for spacetime perturbation

S =
1

16π

∫
M
L =

1

16π

∫
M
Rab ∧ ηab + Lmatter, (1)

Rab = dωab + ωac ∧ ωcb (2)

g = ϑa ⊗s ϑb (3)

ηab = ∗(ϑa ∧ ϑb) =
1

2
εabcdϑ

c ∧ ϑd. (4)

A conserved Hamiltonian Noether current 3-form H(ξ) can be

defined,

H(ξ) = £ξω
ab ∧ ηab − iξL, (5)

such that the Noether current H(ξ) is closed (dH(ξ) ' 0) when the

field equations are satisfied.

Locally there exist a 2-form (called the Noether charge)

Q(ξ) = iξω
ab ∧ ηab (6)

such that, on solution, H(ξ) w dQ(ξ).
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When integrated on a 3-space Σ, it gives a “Hamiltonian”

H(ξ) =
1

16π

∫
Σ
H(ξ) =

1

16π
[

∫
Σ
ξµHµ +

∮
∂Σ

Q], (7)

where Hµ are constraints including matter fields contributions.

The value of H(ξ) is therefore given by the boundary term

B =
1

16π

∮
∂Σ

Q(ξ). (8)

Although H(ξ) is sometimes called “Hamiltonian” in the literature,

it may not be functionally differentiable to define conserved

quantities along the displacement vector field ξ which generates

diffeomorphism invariant transformations.

We justify the functional differentiability of H(ξ) as the total

Hamiltonian by further varying H(ξ),

δH(ξ) = Ω(£ξ, δ) +
1

16π

∮
∂Σ

iξ(δω
ab ∧ ηab), (9)

where Ω is the symplectic 3-form,

Ω(£ξ, δ) =
1

16π

∫
Σ
£ξω

ab ∧ δηab − δωab ∧£ξηab. (10)
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If the symplectic 3-form is a total variation Ω(£ξ, δ) = δH̃(ξ), then

H̃(ξ) is the (well-defined) functionally differentiable Hamiltonian. In

this case, replacing δ by £ξ, we obtain £ξH̃(ξ) = 0. The value of H̃(ξ)

gives the dynamically conserved quantities associated with the

vector field ξ. On shell, we have δH̃ = 1
16π

∮
S δQ(ξ)− iξ(δωab ∧ ηab).

Again, replacing δ by £ξ, we arrive at a general definition of the

stationary spacetime boundary condition by requiring that

£ξH̃ =
1

16π

[∮
S
iξω

ab ∧£ξηab + £ξω
ab ∧ iξηab

]
= 0. (11)

This can be satisfied by the boundary conditions on a bifurcate

Killing horizons for stationary black holes or the Isolated Horizons

boundary conditions, such that £ξϑ
a|S = 0,£ξω

ab|S = 0 (which implies

£ξH̃|S = 0).

In a general dynamical situation, the energy is not conserved, there

is no such a Hamiltonian H̃(ξ). However, we can still make sense of a

quasi-local energy flux. Like the notion of the energy in General

Relativity, the quasi-local energy flux is also tied to a choice of a

vector field ξ.
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Apply perturbation ∆ to a spacetime region with stationary

boundary conditions such that in the initial boundary, the vector ξ

satisfy the stationary boundary conditions.

δE(ξ) ≡ ∆Ω(£ξ, δ) +

∮
S
iξ

(
δωab ∧∆ηab −∆ωab ∧ δηab

)
(12)

where

E = ∆H(ξ)−
∮
S
iξ(∆ω

ab ∧ ηab) (13)

is a perturbation of H with a correction term in order to have a

symplectic structure in the boundary term expression and

identifying δ with £ξ.

We obtain the corresponding quasi-local energy flux,

F(ξ) ≡ £ξE(ξ), (14)

associated to the perturbation ∆,

F(ξ) =
1

16π

∮
S
iξ

(
£ξω

ab ∧∆ηab −∆ωab ∧£ξηab

)
, (15)

where conditions £ξηab|S = 0 and £ξω
ab|S = 0 define the stationary

cases and the corresponding quasi-local energy flux vanishes.
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Vaidya spacetime example, Bondi type energy flux and First law

Vaidya spacetime which describes a spherically symmetric collapse of

null dust (radiation).

ds2 = −e2ψdt2 + e−2ψdr2 + r2(dθ2 + sin2 θdφ2), (16)

where ψ = ψ(t, r) and e2ψ = 1− 2m(t, r)/r.

In this coordinate, the marginally trapped surfaces are given by

r = 2m(t, r). For constant m(t, r), this is just the standard

Schwarzschild metric. Now consider a perturbation ∆m(t, r) away

from the stationary solution,

m(t, r) = m0 + ∆m(t, r), (17)

because m0 is a constant, this implies m′ = ∂r(∆m) and ṁ = ∂t(∆m).

In terms of the orthonormal frames, the natural choice is,

ϑ0 = eψdt, ϑ1 = e−ψdr,

ϑ2 = rdθ, ϑ3 = r sin θdφ, (18)
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with corresponding basis vectors:

e0 = e−ψ∂t, e1 = eψ∂r,

e2 =
1

r
∂θ, e3 =

1

r sin θ
∂φ. (19)

For ξ = c1∂t + c2∂r, the Lie derivatives of ϑa are

£ξϑ
0 =

−1

reψ

[
c1ṁ+ c2

(
m′ −

m

r

)]
dt,

£ξϑ
1 =

1

re3ψ

[
c1ṁ+ c2

(
m′ −

m

r

)]
dr,

£ξϑ
2 = c2dθ,

£ξϑ
3 = c2 sin θdφ. (20)

The spin-connection ωab has the following nonvanishing terms:

ω01 =
1

re4ψ
ṁdr −

1

r

(
m′ −

m

r

)
dt = −ω10,

ω12 = −eψdθ = −ω21,

ω13 = −eψ sin θdφ = −ω31,

ω23 = − cos θdφ = −ω32. (21)

The corresponding Lie derivatives of ωab have the follow
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nonvanishing terms,

£ξω
01 =

1

e4ψ

[
c1

r

(
m̈+

4ṁ2

re2ψ

)]
dr

+
1

e4ψ

[
c2

r

(
ṁ′ +

4ṁm′

re2ψ
−
ṁ

r
−

4mṁ

r2e2ψ

)]
dr

−
[
c1

r

(
ṁ′ −

ṁ

r

)
+
c2

r

(
m′′ −

2m′

r
+

2m

r2

)]
dt

= −£ξω10,

£ξω
12 =

1

reψ

[
c1ṁ+ c2

(
m′ −

m

r

)]
dθ

= −£ξω21,

£ξω
13 =

1

reψ

[
c1ṁ+ c2

(
m′ −

m

r

)]
sin θdφ

= −£ξω31,

£ξω
23 = 0 = −£ξω32. (22)

The perturbation of the orthonormal tetrad the spin-connection
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have the following forms respectively,

∆ϑ0 = −
1

reψ
∆mdt,

∆ϑ1 =
1

re3ψ
∆mdr,

∆ϑ2 = 0,

∆ϑ3 = 0, (23)

∆ω01 =

(
4ṁ∆m

re3ψ
+

1

re4ψ
∆ṁ

)
dr −

1

r

(
∆m′ −

∆m

r

)
dt

= −∆ω10

∆ω12 =
1

reψ
∆mdθ = −∆ω21

∆ω13 =
1

reψ
∆m sin θdφ = −∆ω31

∆ω23 = 0 = −∆ω32 (24)

Many of the terms vanish in the energy flux F(ξ) , the remaining
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nonvanishing terms that will contribute are,

2

∮
iξ(£ξω

12 ∧∆η12 + £ξω
13 ∧∆η13)

= −16πc1
∆m

re2ψ

[
c1ṁ+ c2

(
m′ −

m

r

)]
, (25)

−2

∮
iξ(∆ω

12 ∧£ξη12 + ∆ω13 ∧£ξη13)

= 16πc1

[
∆m

re2ψ

[
c1ṁ+ c2

(
m′ −

m

r

)]
− c2

∆m

r

]
, (26)

and

−2

∮
iξ(∆ω

01 ∧£ξη01)

= 16πc2

[(
∆m′ −

∆m

r

)
c1 −

(
4ṁ∆m

e3ψ
+

∆ṁ

e4ψ

)
c2

]
. (27)
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Finally, the total energy flux is

F(ξ) = £ξEdyn(ξ)

= 16πc2

[(
∆m′ −

2∆m

r

)
c1 −

(
4ṁ∆m

e3ψ
+

∆ṁ

e4ψ

)
c2

]
.

(28)

Taking u = t− r = const and t, r →∞ to approach the null infinity and

dropping the term contains ṁ∆m which is of higher order in ∆, we

arrive at the Bondi type energy flux

F(ξ) = 16πc2(c1m
′ − c2ṁ) = −16π∂um(u), (29)

Where, c1 = 1 and c2 = 1 by requiring that ξ and ∆ defines the same

direction of mass changes for the consistency of interchanging ∆ and

£ξ.

The same energy flux result, equation was also obtained long ago by

Lindquist, Schwartz and Misner using Landau-Lifshitz stree-energy

pseudotensor. Such energy flux −∂um(u) has the interpretation as

the luminosity of the star as seen by an observer at null infinity.
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Notice that the nonvanishing term come only from the following

equations

F(ξ) = −
∮
iξ[∆ω

01] ∧£ξ(ϑ
2 ∧ ϑ3)

−
∮

(iξϑ
1)[∆ω12 ∧£ξϑ

3 −∆ω13 ∧£ξϑ
2]

=

∮
∂Σ

iξ[−∆ω01 +
∆m

r2eψ
ϑ1] ∧£ξ(ϑ

2 ∧ ϑ3) (30)

where ϑ2 ∧ ϑ3 is the area element.

This indicates the first law for general spacetime regions. For

stationary spacetimes where £ξ(ϑ
2 ∧ ϑ3) = 0, the energy flux vanishes.

The appearance of the first law provides a nontrivial consistent

check of our energy flux expression.
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Quasi-local energy flux expression for FRW Cosmology

Robertson-Walker metric with k = 0,

ds2 = −dt2 + a(t)2
[
dr2 + r2dΩ2

]
. (31)

with

ϑ0 = dt, ϑ1 = a(t)dr, ϑ2 = a(t)rdθ, and ϑ3 = a(t)r sin θdφ.

The Cosmological Dynamical Horizon (CDH) can now be defined as

hypersurfaces being foliated by family of closed two-dimensional

surfaces, such that on each leaf, the expansion of one future directed

null normal is zero.

Given a 2-surface S in a four-dimensional spacetime M , one can

introduce a set of orthonormal vectors e0, e1, e2, and e3 adapted to

the 2-surface S, with e0 and e1 being the set of timelike and spacelike

unit normals to S, and eA = [e2, e3] being tangent to S.
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The extrinsic curvatures of S with respect to e0 and e1 directions are:

k(e0)AB = g(eB ,∇Ae0) = Γ0BA (32)

k(e1)AB = g(eB ,∇Ae1) = Γ1BA. (33)

Here Γabc = g(eb,∇cea) are Ricci rotation coefficients (ωab = Γabcϑc)

and the null expansion parameters ρ and µ of the CDH for FRW

cosmology becomes,

ρ =
1

2
[k(e0)+k(e1)] = −

(
ȧ

a
+

1

ar

)
, and µ =

1

2
[k(e0)−k(e1)] = −

(
ȧ

a
−

1

ar

)
.

(34)

The future pointing CDH for expanding universe are defined by

µ = 0 and ρ < 0,

H ≡
ȧ

a
=

1

ar
=

1

R
. (35)

For contracting universe, the dynamical cosmological horizons are

defined by µ > 0 and ρ = 0.

The CDH is S2 ×R, and in this way are always timelike in

contrasting to the BH dynamical horizons which are spacelike.
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There is a duality between the cosmological isolated/dynamical

horizons and the black hole isolated/dynamical horizons under

interchanges between timelike and spacelike hypersurfaces.

Let generic dynamical horizons Ξ, be a sub-manifold of spacetime that

bears topology S2 × R with every cross-section of Ξ being marginally

trapped(this condition ensures that £ξηab|Ξ = 0),

and ΞS be a generic isolated horizon with,

£ξω
ab|ΞS

= 0,

and having the null energy conditions being satisfied on both Ξ and

ΞS .

These boundary conditions of the generic isolated horizon ΞS is to

guarantee the vanishing of the variation of the Hamiltonian and the

existence of a functionally differentiable Hamiltonian.
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Applying to the Robertson-Walker metric, it leads to the

displacement null vector orthogonal to surface ∂ΞS being

ξ = χ
(
∂t − 1

a
∂r
)

(where χ is the conformal freedom for the choice of the null vector ξ)

provided

χ = constant, and Ḣ = 0. (36)

This is the case for constant Hubble parameter H0(i.e. during

exponent inflation).

During inflation, the energy flux flowing in and out of the CDH are

balanced out and the system is being dynamically conserved. We

shall call this generic isolated horizon ΞS when applied to cosmology

as the cosmological isolated horizon(CIH).
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Establish the zeroth law for the CIH on ΞS like the zeroth law on

the isolated horizon of black holes.

The key arises from the requirement that £ξω
ab|ΞS

= 0.

In the case of Robertson-Walker metric, iξdω
ab|ΞS

= 0 leads to

diξω
ab|ΞS

= 0 by the identity £ξ = iξd+ diξ.

Therefore, iξω
ab is a constant on the CIH, ΞS , and the only

non-vanishing coefficient is the just surface gravity

κ|ΞS
≡ iξω01|ΞS

= χ
ȧ

a
= constant ≡ H0. (37)

The constancy of κ on the CIH ΞS establishes the zeroth law for the

CIH.

Extending to CDH, we have to consider the energy flux for a

perturbation of the above stationary spacetime, in particular, a

perturbation, ∆ on a(t), along the CDH.
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An example is the slow-rolling period during cosmo inflation such

that Ḣ � H2.

Introducing a one parameter family λ of the change of the scaling

factor, a(t, λ) along the CDH, then the perturbation ∆ is given by

∆a(t) := lim
λ→0

a(t, λ)− a(t, 0)

λ
≡
da(t, λ)

dλ

∣∣∣∣
λ=0

= ȧ(t). (38)

Similarly ∆ȧ(t) = ä(t).

With this perturbation ∆ on a(t), we obtain,

∆ϑ0 = 0, ∆ϑ1 = (∆a)dr, ∆ϑ2 = (∆a)rdθ, ∆ϑ3 = (∆a)r sin θdφ,

and the perturbation of the spin-coefficients,

∆ω01 = (∆ȧ)dr, ∆ω02 = (∆ȧ)rdθ, ∆ω03 = (∆ȧ)r sin θdφ,

∆ω12 = ∆ω13 = ∆ω23 = 0.
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The total energy flux flowing across the CDH for a perturbation

away from the stationary case becomes:

F = −χ2Ḣ
(
2R+HR2

) ∣∣R2

R1

= −3Ḣχ2(R2 −R1), (39)

using the fact that on CDH, the expansion of one future directed

null normal is zero, i.e. H = 1/R.

Note that our null vector ξ was defined with respect to the past light

cone of the co-moving observer.

For spacetime satisfies the null energy condition with ε being the

energy density,

ε+ p
c2
≥ 0,

Ḣ = − 4πG
c4

(ε+ p
c2

) leads to Ḣ ≤ 0,

A negative sign in the gravitational energy flux indicated an inward

energy flowing.
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The importance of this results indicates that it is this inward flowing

flux that gives rises to the cosmo acceleration in a linear relation.

The flux expression in (39) is dual to the energy balance expression

for dynamical black hole horizons under timelike and spacelike

hypersurfaces interchanges. Note also, during inflation, no energy

flux will go through the constant Hubble radius.

To complete the analysis, we shall compare our results of the

quasi-local energy flux with results obtained from the Friedmann

energy equations and the continuity equation in FRW cosmology.

We start by noting that the continuity equation is,

ε̇+ 3(ε+
p

c2
)H = 0, (40)

and the rate of change in total energy E that gives the first law of

thermodynamics is,
dE

dt
= −

p

c2
d

dt
R3. (41)

To investigate how energies are changing through the CDH

ERE2010: 20/23



hypersurface Ξ, we apply £ξ to the energy E = 4π
3
εR3 to obtain

χ(∂t −
1

a
∂r)E = −χ

4π

3
(ε+

p

c2
)R2

=
χc4

G
ḢR2 (42)

and note the change in total energy is proportional to Ḣ along ξ. On

another hand, integrating flux expression (39) along the null

hypersurface with dt = dR, we obtain the same changes in total

energy ∫
−3Ḣχ2R(dt+ dR)

∣∣∣∣
Ξ

= −3Ḣχ2R2, (43)

and therefore fixing the normalization for the conformal factor at

χ = − c4

3G
.
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To establish the corresponding first law on the CDH, we compare

results in the dynamical horizons balance laws from with the flux

expression in (39),

dE = −3Ḣχ2dR (44)

(for Ḣ being approximately constant as in realistic cases). Note that

with null energy condition, Ḣ ≤ 0, by defining effective surface

gravity κ by

κ = −
12Ḣχ2G

Rc2
, (45)

this yields a generalized first law, dE = κc2

8πG
dA, on the CDH.

In general, as the universe is accelerating, the effective surface

gravity will vary with time, and depend on the conformal factor χ.

Again, as in the black hole thermodynamics, we obtain the effective

local temperature on the CDH being,

T =
~κ

2πkBc
=
−2~Ḣc5

3πkBRG
. (46)

This temperature is much smaller than the 2.7 K temperature of the

universe determined by the cosmic microwave background radiation.
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We end the investigation of CDH with the following conclusions.

• During inflation, no flux flowing in/out of the horizon, effectively,

spacetime of the cosmo was developed from vacuum density of a

”single” point.

• The cosmo acceleration is linearly proportional to the inwardly

flowing energy flux across the CDH. It is the nonzero energy flux

that causes the cosmo acceleration.

• There exist a dual picture between black hole isolated and

dynamical horizons and the CIS(during exponent inflation) and

CDH during upon interchanges between time like and space

hypersurfaces. More precisely, the isolated horizon and

dynamical horizons of dynamical black holes are mapped into

cosmological horizon and Hubble horizon during inflation

corresponding by identifying the corresponding light cone

structures.
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