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Killing tensors (1)

Killing vector
X(µ;λ) = 0 .

Conformal Killing vector

Z(λ;µ) =
1
n

gλµZσ
;σ .



Killing tensors (2)

Stackel-Killing tensor of order m

Kµ1···µm = K(µ1···µm) ,

K(µ1···µm;σ) = 0 .

Conformal Stackel-Killing tensor of order 2
(Tachibana 1969)

A(µν;σ) = g(µνAσ)

with
Aσ =

1
n + 2

(2Aµσ;µ + Aµµ;σ) .



Killing tensors (3)
Killing-Yano tensor of order p ≤ n (Yano 1952)

ωµ1···µp = ω[µ1···µp] ,

ωµ1···µp−1(µp;ν) = 0.

Conformal Killing-Yano tensor of order 2

fλµ;ν + fνµ;λ =
2

n − 1

(
gνλf σµ;σ + gµ(λf σν) ;σ

)
.

Notation:
fκ := f σκ;σ , f σ;σ = 0,

and consequently

f(µ;ν) =
n − 1
n − 2

Rσ(µf σν) .



Classical conserved quantities (1)

In classical mechanics a general function Q of position x and of
momentum π is a constant of motion if and only if the Poisson
bracket with the Hamiltonian

H = gµνπµπν ,

vanishes
[H,Q]P =

∂H
∂xµ

∂Q
∂πµ

− ∂Q
∂xµ

∂H
∂πµ

= 0 .

Suppose that γ is a geodesic with tangent vector uµ which is
interpreted as the momentum of a free particle of unit mass
moving along geodesic.



Classical conserved quantities (2)

For a Killing vector or a Stackel-Killing tensor generalized
Killing equations ensure that

QK = Xµuµ ,

QSK = Kµ1···µmuµ1 · · · uµm ,

are constants along γ.
For a conformal Killing vector or a conformal Stackel-Killing
tensor the quantities

QCK = Zµuµ ,

QCSK = Aµνuµuν ,

are conserved along a null geodesic γ

uµuµ = 0 .



Quantum anomalies (1)

In the quantum case, the momentum operator is given by ∇µ
and the Hamiltonian operator for a free scalar particle is the
covariant Laplacian acting on scalars

H = � = ∇µgµν∇ν = ∇µ∇µ

For a CK vector we define the conserved operator in the
quantized system as

QCK = Zµ∇µ .

In order to identify a quantum gravitational anomaly we shall
evaluate the commutator [�,QCK ]Φ , for Φ ∈ C∞(M) solutions
of the Klein-Gordon equation.



Quantum anomalies (1)

Explicit evaluation of the commutator:

[H,QCK ] =
2− n

n
Z ;σµ
σ ∇µ +

2
n

Zσ
;σ� .

In the case of ordinary K vectors, the r. h. s. of this commutator
vanishes and there are no quantum gravitational anomalies.
However for CK vectors, the situation is quite different. Even if
we evaluate the r. h. s. of the commutator on solutions of the
massless Klein-Gordon equation, �Φ(x) = 0,the term Z ;σµ

σ ∇µ
survives. Only in a very special case, when by chance this term
vanishes, the anomalies do not appear.



Quantum anomalies (2)

Quantum analog of conserved quantities for Killing tensors K µν

QSK = ∇µK µν∇ν .

Similar form for QCSK constructed from a conformal
Stackel-Killing tensor.
Evaluation of the commutator (Carter 1977)

[�,QSK ] = 2(∇(σK µν)∇σ∇µ∇ν
+3∇κ

(
∇(σK κν)

)
∇ν∇σ

+

{
−4

3
∇σ
(

R [σ
κ K ν]κ

)
+ ∇σ

(
1
2

gκλ(∇σ∇(κK λν) −∇ν∇(κK σλ)) +∇µ∇(σK µν)

)}
∇ν



Quantum anomalies (3)

In case of Stackel-Killing tensors the commutator simplifies:

[�,QSK ] = −4
3
∇µ(R [µ

λ K ν]λ)∇ν .

There are a few notable conditions for which the commutator
vanishes, i.e. No anomalies:
I Space is Ricci flat, i. e. Rµν = 0
I Space is Einstein, i. e. Rµν ∝ gµν
I Stackel-Killing tensors associated to Killing-Yano tensors of

rank 2:
Kµν = ωµλω

λ
ν .



Quantum anomalies (4)

In case of conformal Stackel-Killing tensors there are quantum
gravitational anomalies. Even if we evaluate the commutator for
a conformal Stackel-Killing tensor associated to a conformal
Killing-Yano tensor

Aµν = fµλf λν .

the commutator does not vanish

[�,QCSK ] =
4

n − 1
fλf λσ∇σ�

+
4

n − 1

(
∇ν fλf λσ

)
∇ν∇σ +

2
n − 1

(
∇σfλf λσ

)
�

+

{
14− n

6(n − 1)
fλf λσR ν

σ −
4(n − 2)

3(n − 1)
∇σ
(

f (σ;λ)f νλ − f (ν;λ)f σλ
)

+
n + 4

3(n − 1)

(
�fλf λσ

)
− n − 2

3(n − 1)

(
∇(σ∇ν)fλf λσ

)}
∇ν



Gauge covariant approach (1)

Classical dynamics of a point charge q of mass M in the
external Abelian gauge field Ai and a scalar potential V (x i)

H =
1

2M
g ij(pi − qAi)(pj − qAj) + V .

Hamilton equations of motion are not manifestly gauge
covariant.



Gauge covariant approach (2)

Gauge covariant formulation (van Holten 2007)

Π = p− qA = Mẋ .

Hamiltonian becomes

H =
1

2M
g ijΠiΠj + V ,

Covariant Poisson brackets

{f ,g} =
∂f
∂x i

∂g
∂Πi
− ∂f
∂Πi

∂g
∂x i + qFij

∂f
∂Πi

∂g
∂Πj

.

where Fij = Aj;i − Aj;i is the field strength.



Gauge covariant approach (3)

Fundamental Poisson brackets

{x i , x j} = 0 , {x i ,Πj} = δi
j , {Πi ,Πj} = qFij ,

Momenta Π are not canonical.
Hamilton’s equations:

ẋ i = {x i ,H} =
1
M

g ijΠj ,

Π̇i = {Πi ,H} = qFij ẋ j − V,i .



Gauge covariant approach (4)

Conserved quantities of motion in terms of phase-space
variables (x i ,Πi)

K = K0 +

p∑
n=1

1
n!

K i1···in
n (x) · · ·Πi1Πin ,

Bracket
{K ,H} = 0 .

vanishes.



Gauge covariant approach (5)

Series of constraints:

K i
1V,i = 0 ,

K0,i + qFjiK
j
1 = MK j

2iV,j ,

K (i1···in;in+1)
n + qF (in+1

j K i1···in)j
n+1 =

M
(n + 1)

K i1···in+1j
n+2 V,j

for n = 1 , · · · (p − 2) ,

K (i1···ip−1;ip)
p−1 + qF (ip

j K i1···ip−1)j
p = 0 ,

K (i1···ip;ip+1)
p = 0 .



Gauge covariant approach (6)
Role of Killing-Yano tensors (1)

In pseudo-classical spinning particles models the condition of
the electromagnetic field Fµν to maintain the non generic
supersymmetry associated with a KY tensor ω of rank p is

Fν[µpω
ν

µ1···µp−1]
= 0 ,

Consequences of this condition for the series of constraints
Assume that the Stäckel-Killing tensor K2µν is associated with a
Killing-Yano tensor ωµν

K2µν = ωµλω
λ
ν .

In this case, condition for the electromagnetic field Fµν reads

Fλ[µω λ
ν] = 0 .



Gauge covariant approach (7)
Role of Killing-Yano tensors (2)

We get
F i2

j K i1j
2 = 0 .

Therefore Killing-Yano tensors prove to produce significant
simplifications in the series of constraints for the higher order
integrals of motion.



Gauge covariant approach (8)
Examples (1)

ConsiderM to be a 3-dimensional Euclidean space E3

We investigate the constant of motion in a Kepler-Coulomb
potential adding different types of electric and magnetic fields
We consider the motion of a point charge q of mass M in the
Coulomb potential Q/r produce by a charge Q when some
external electric or magnetic fields are also present.
Non relativistic Kepler-Coulomb problem admits two vector
constants of motion
I angular momentum

L = r×Π ,

I Runge-Lenz vector

K = Π× L + MqQ
r
r
.



Gauge covariant approach (9)
Examples I. Constant electric field (I.1)

Electric charge q moves in the Coulomb potential with a
constant electric field E present.

Hamiltonian:
H =

1
2M

Π2 + q
Q
r
− qE · r ,

with Π = M ṙ in spherical coordinates of E3.



Gauge covariant approach (10)
Examples I. Constant electric field (I.2)

Looking for a constant of motion of the form

K = K0 + K1iΠi +
1
2

K2ijΠiΠj .

Components K2ij are Stäckel-Killing tensors, of rank p = 2

K2ij = 2δijn · r− (ni rj + njni) ,

written in spherical coordinates with n an arbitrary constant
vector.

Choose n along E



Gauge covariant approach (11)
Examples I. Constant electric field (I.3)

Solution of the series of constraints for a first integral of motion

K0 =
MqQ

r
E · r− Mq

2
E · [r× (r× E)] .

K1 = r× E ,

modulo an arbitrary constant factor. This vector K1 contribute to
a conserved quantity with a term proportional to the angular
momentum L along the direction of the electric field E. In
conclusion, when a uniform constant electric field is present,
the KC system admits two constants of motion L · E and C · E
where C is a generalization of the Runge-Lenz vector

C = K− Mq
2

r× (r× E) .



Gauge covariant approach (12)
Examples II. Spherically symmetric magnetic field (II.1)

Spherically symmetric magnetic field

B = f (r)r ,

Fij = εijkBk = εijk rk f (r) ,

+ Coulomb potential acting on a electric charge q.
Start with a Stäckel-Killing K2ij of rank 2 as in in the previous
example.
From the hierarchy of constraints we get

K1i = q
[∫

rf (r)dr
]

(n× r)i ,



Gauge covariant approach (13)
Examples II. Spherically symmetric magnetic field (II.2)

Equation for K0 can be solely solved making choice of a definite
form for the function f (r)

f (r) =
g

r5/2 ,

with g a constant connected with the strength of the magnetic
field.
With this special form of the function f (r) we get

K0 =

[
MqQ

r
− 2g2q2

r

]
(n · r) ,

and
K1i = −2gq

r1/2 (r× n)i .



Gauge covariant approach (14)
Examples II. Spherically symmetric magnetic field (II.3)

Collecting the terms K0,K1i ,K2ij the constant of motion
becomes

K = n ·
(

K +
2gq
r1/2 L− 2g2q2 r

r

)
,

with n an arbitrary constant unit vector and K,L as in the pure
Coulomb problem.



Gauge covariant approach (15)
Examples III. Magnetic field along a fixed direction (III.1)

Magnetic field along a fixed direction n

B = B(r · n)n ,

where, for the beginning, B(r · n) is an arbitrary function.
Again start with a Stäckel-Killing K2ij of rank 2 and we get

K1i = q
[∫

rB(r · n)d(r · n)

]
(r× n)i .

Equation for K0 proves to be solvable for a particular form of the
magnetic field

B =
α√

αr · n + β
n ,

with α, β two arbitrary constants.



Gauge covariant approach (16)
Examples III. Magnetic field along a fixed direction (III.2)

Finally we get for K0 and K1i

K0 =
MqQ

r
(r · n) + αq2(r× n)2 ,

K1i = −2q
√
αr · n + β (r× n)i .

Constant of motion for this configuration of the magnetic field
superposed on the Coulomb potential becomes:

K = n ·
[
K + 2q

√
αr · n + β L

]
+ αq2(r× n)2 .

As in the previous example the angular momentum L is no
longer conserved, forming part of the constant of motion K .



Outlook

I Non-Abelian dynamics
I Spaces with skew-symmetric torsion
I Higher order Killing tensors (rank ≥ 3)
I .....
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