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Conformastationary and conformastat spacetimes

Stationary spacetime (M, g, ): local coordinates {t,2} 3 ;
ds® = —eQU(dt + Agdz®)? + eiQUﬁabdx“dﬂ’,

where U, A, and /ﬁab do not depend on t. U and A, live on (3, Aqp)
Static spacetime: A, = 0.

Conformastationary spacetime: stationary spacetime where
(X3, hap) is conformally flat < the York tensor density vanishes

1~ .~ ~
Y,© = e (2v Ry, — Qhabch> =0

}Afab, V and Nabe relative to ﬁab Y., =Y., and Y% = 0.

Conformastat spacetimes: conformastationary spacetimes which
are static.




Final result

Electrovacuum spacetime: solution of the Einstein-Maxwell field

equations outside the sources.

All conformastat electrovacuum spacetimes
correspond to either
o the Majumdar-Papapetrou class of spacetimes
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Final result

Electrovacuum spacetime: solution of the Einstein-Maxwell field
equations outside the sources.

All conformastat electrovacuum spacetimes (inheriting)

correspond to either

@ the static plane-symmetric Einstein-Maxwell fields
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Final result

Electrovacuum spacetime: solution of the Einstein-Maxwell field
equations outside the sources.

All conformastat electrovacuum spacetimes (inheriting)

correspond to either

@ the Bertotti-Robinson conformally flat solution

ds* = — sinh? (%) dr?+d22 0% (d9*+sin® 9dp?), @ = ' cosh (%)



Final result

Electrovacuum spacetime: solution of the Einstein-Maxwell field
equations outside the sources.

All conformastat electrovacuum spacetimes (inheriting)

correspond to either

@ the non-extreme Reissner-Nordstrom static solution

oM Q2 oM | Q*\ ! ‘ v
ds? = — (1 -—+ Q—) dr?+ (1 -—+ Q—) dr? +7r2(d9? +sin? 9dp?), & = 6199
r r r r




Final result

Electrovacuum spacetime: solution of the Einstein-Maxwell field
equations outside the sources.

All conformastat electrovacuum spacetimes (inheriting)

correspond to either

@ or the hyperbolic counterpart of the Reissner-Nordstrom
static solution

oM Q? 2\t ‘ :
ds? = — <71 -—+ Q—) d72+<71 -—+ —2> dr? 472 (d9? +sinh? 9dp?), ® = 6199
r r r



Electrovacuum field equations

Inheriting Maxwell fields: F 3 for which Ly, F = 0. The
Einstein-Maxwell equations outside the sources imply 3

e ®(z%) the electromagnetic potential
e &(x”) the Ernst potential

P Hy = (RE+ ®D) 120, G,=1/2(RE + DD) (€, + 20D ,)
satisfy

Rap = GuGy + GuGy — (HyHy + HoHy),
. 1_
V“Ha+§G-H—gG~H:0,

VG, —H-H—-(G-G)-G=0.



Electrovacuum field equations

Inheriting Maxwell fields: F 3 for which Ly, F = 0. The
Einstein-Maxwell equations outside the sources imply 3

e ®(z%) the electromagnetic potential
e &(x”) the Ernst potential

P Hy = (RE+ ®D) 120, G,=1/2(RE + DD) (€, + 20D ,)
satisfy

Rap = GaGy + GoGy — (HoHy + HoHy),
WH&+%§-H—%G~H=0,
VG, —H-H—-(G-G)-G=0.
Integrability conditions for the two potentials:
dH=HARG dG=GAG+HAH.



Electrovacuum field equations

Inheriting Maxwell fields: F 3 for which Ly, F = 0. The
Einstein-Maxwell equations outside the sources imply 3

e ®(z%) the electromagnetic potential
e &(x”) the Ernst potential

P Hy = (RE+ ®D) 120, G,=1/2(RE + DD) (€, + 20D ,)
satisfy

Rap = GGy + GoGy — (HoHy + HoHy),
WH&+%§-H—%G~H=0,
VG, —H-H—-(G-G)-G=0.
Integrability conditions for the two potentials:
dH =H ARG dG=GAG+ HAH.
Metric determined by
eV =RE+ 0B, dAgy = 2 Ui 3G



Vacuum stationary and electro-magnetostatic cases

Vacuum Case: ® =0, so that H, = 0 and hence EM egs. read

R = GoGy + GoGy,
VG, — (G-G)-G=0.
Integrability for potentials: dG =G AG.

Static Case: G, — G, = 0.

Then G, = U, and also H, = e %%, for constant 6.

Define X, = e_wHa = e_U\Ifﬂ where ¥ = e~ is real.
EM egs. reduce to

~

R =2(G.Gy — XoXp),

ViX, -G X =0,

VeG, — X - X =0.

Integrability for potentials: dH =HANG, dG=0.



Vacuum stationary and electro-magnetostatic cases

Vacuum Case: ® =0, so that H, = 0 and hence EM egs. read

R = GoGy + GoGy,
VG, — (G-G)-G=0.
Integrability for potentials: dG =G AG.

Static Case: G, — G, = 0.

Then G, = U, and also H, = e %%, for constant 6.
Define X, = e H, = e_U\IQa
Define £, = $(U, + jXa).
(hypercomplex plane j; j2 = 1 with conjugation j = —5). EM egs. read

where ¥ = ¢~ is real.

Eab = 4(Zaib + Xu]azb)y
Vis, — (2 -%)- 2 =0.
Integrability for potentials:  d¥ =X A 3.



Common framework

@ Denote by ¢ both i and j, so that 2 = &1 accordingly, and by the
general conjugation.

@ Consider a “composed” vector field J* and a metric Eab that satisfy

Eab = N(yajb + jayb)
VY= (¥ =) Y=0
V=YY

@ Vacuum (stationary) case: N =1, )J,(= G,) complex

@ Static (electrovacuum) case: N =4, ), (= X,) hypercomplex

Comformastationarity

Introducing the 1-form L=%QYA )7) York =0 <

~ ~ . .~ 1~ . ~
(Vo — Vo) L8 + (W VeV + W Vea) — §ham”“vc(y -Y)=0.




Solve the system. Sketch:

Q Case Y- -Y=0:

e Vacuum: G -G =0 = flat.
e Static: X - X =0 = flat: trivial

(Lukacs, Perjés and Sebestyén, 1983)

«O>» «Fr «=)r « =)
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Common framework

Solve the system. Sketch:
Q Case Y- -)Y =0 = flat.
© Case L, # 0: Take the basis {La,ymja}.

@ One of the York =0 egs. reads LAdL =0. = L =1 xdep.
e dY =Y AY = dcomposed o;
1
Y= do

o+o

Vacuum: o(= &) = 2V +iQ) is the Ernst potential
Static: 0 = 3(e¥ + V)

o Use the three potentials o, ¢ and ¢ as coordinates.
Write down the equations, and study the compatibility
conditions, in particular for N =1 and N = 4.
Some long calculations show that there are no solutions.



Solve the system. Sketch:
Q Case Y- Y =0 = flat.

@ Case L, #0: Is empty = L, = 0 necessarily, i.e. ) || y
Conformastationary vacuum spacetimes are always characterised by a
functional relation between the potentials U and ). Pperjés (19863), Perjés(1986b)
Conformastat electrovacuum spacetimes are always characterised by a
functional relation between the potentials U and V.
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Conformastat electrovacuum: complete solution

Divergence equation for ), firstly fixes, for an arbitrary constant k,
eV =1- 2k + W2,
Can be rewritten in parametric form in terms of an auxiliary function V' as

kK =1: U=k-1/V, eV =v2,
E>1: W=k—+k2—1cothV, &V =(k%—- 1)sinh72V,
E2<1: U=k—v1-kcotV, eV =(1-k?)sin"?V.

Secondly, implies V2V =0 in all cases. The Ricci equations read

E2=1: Rup=0,
]{?2 >1: Eab = 2‘/:(1‘/:1,,

K> <1:  Rgp=-2V,Vy.

The remaining equations for ﬁab and V,: York= 0.



Conformastat electrovacuum: complete solution

hap Ricci scalar  Qap

R=0 any Majumdar-Papapetrou
R>0 flat Plane-symmetric field
spherical Bertotti-Robinson
Reissner-Nordstrom M?—-Q?>>0
hyperbolic  hyperbolic Reissner-Nordstrom
R<0 =spherical Bertotti-Robinson
Reissner-Nordstrom M?-Q?<0
Corollary 1:

Improved (local) characterisation of Majumdar-Papapetrou

Before: static electrovacuum spacetime with flat Bab (ﬁab =0)
New: N N
static electrovacuum spacetime with conformally flat h,;, and R =0




Conformastat electrovacuum: complete solution

hap Ricci scalar  Qap

R=0 any Majumdar-Papapetrou
R>0 flat Plane-symmetric field
spherical Bertotti-Robinson
Reissner-Nordstrom M?—-Q?>>0
hyperbolic  hyperbolic Reissner-Nordstrom
R<0 =spherical Bertotti-Robinson
Reissner-Nordstrom M?-Q?<0
Corollary 2:

Global consideration

The conformastat electrovacuum asymptotically flat spacetimes are
@ the AF Majumdar-Papapetrou

@ and the Reissner-Nordstrom static exterior
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