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Conformastationary and conformastat spacetimes

Stationary spacetime (M, gµν): local coordinates {t, xa} ∃ ;

ds2 = −e2U (dt+Aadx
a)2 + e−2U ĥabdx

adxb,

where U , Aa and ĥab do not depend on t. U and Aa live on (Σ3, ĥab)

Static spacetime: Aa = 0.

Conformastationary spacetime: stationary spacetime where
(Σ3, ĥab) is conformally flat ⇔ the York tensor density vanishes

Ya
e = η̂bce

(
2∇̂cR̂ba −

1

2
ĥab∇̂cR̂

)
= 0

R̂ab, ∇̂ and η̂abc relative to ĥab Yae = Yea and Ya
a = 0.

Conformastat spacetimes: conformastationary spacetimes which
are static.



Final result

Electrovacuum spacetime: solution of the Einstein-Maxwell field
equations outside the sources.

All conformastat electrovacuum spacetimes (inheriting)

correspond to either

the Majumdar-Papapetrou class of spacetimes

the static plane-symmetric Einstein-Maxwell fields

the Bertotti-Robinson conformally flat solution

the non-extreme Reissner-Nordström static solution

or the hyperbolic counterpart of the Reissner-Nordström
static solution

ds2 = − 1

V 2
dt2+V 2(dx2+dy2+dz2) ∀ ∇̂2V = 0, Φ = −eiθ 1

V
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ds2 = −(r + b)b

r2
dτ2 +
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(r + b)b
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b
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Electrovacuum field equations

Inheriting Maxwell fields: Fαβ for which L∂tF = 0. The
Einstein-Maxwell equations outside the sources imply ∃

Φ(xa) the electromagnetic potential
E(xa) the Ernst potential

; Ha ≡ (<E + ΦΦ)−1/2Φ,a, Ga ≡ 1/2(<E + ΦΦ)−1(E,a + 2ΦΦ,a)
satisfy

R̂ab = GaGb +GaGb − (HaHb +HaHb),

∇̂aHa +
1

2
G ·H − 3

2
G ·H = 0,

∇̂aGa −H ·H − (G−G) ·G = 0.

Integrability conditions for the two potentials:

dH = H ∧ <G dG = G ∧G+H ∧H.
Metric determined by

e2U = <E + ΦΦ, dAab = 2e−4U η̂abc=Gc.
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Vacuum stationary and electro-magnetostatic cases

Vacuum Case: Φ = 0, so that Ha = 0 and hence EM eqs. read

R̂ = GaGb +GaGb,

∇̂aGa − (G−G) ·G = 0.

Integrability for potentials: dG = G ∧G.

Static Case: Ga −Ga = 0.
Then Ga = U,a and also Ha = e−2iθHa for constant θ.
Define Xa ≡ e−iθHa = e−UΨ,a where Ψ ≡ e−iθΦ is real.

EM eqs. reduce to

R̂ = 2(GaGb −XaXb),

∇̂aXa −G ·X = 0,

∇̂aGa −X ·X = 0.

Integrability for potentials: dH = H ∧G, dG = 0.



Vacuum stationary and electro-magnetostatic cases

Vacuum Case: Φ = 0, so that Ha = 0 and hence EM eqs. read

R̂ = GaGb +GaGb,

∇̂aGa − (G−G) ·G = 0.

Integrability for potentials: dG = G ∧G.

Static Case: Ga −Ga = 0.
Then Ga = U,a and also Ha = e−2iθHa for constant θ.
Define Xa ≡ e−iθHa = e−UΨ,a where Ψ ≡ e−iθΦ is real.

Define Σa ≡ 1
2(U,a + jXa).

(hypercomplex plane j; j2 = 1 with conjugation j̆ = −j). EM eqs. read

R̂ab = 4(ΣaΣ̆b + Σ̆aΣb),

∇̂aΣa − (Σ− Σ̆) · Σ = 0.

Integrability for potentials: dΣ = Σ ∧ Σ̆.



Common framework

Denote by ι both i and j, so that ι2 = ±1 accordingly, and by˜the
general conjugation.

Consider a “composed” vector field Ya and a metric ĥab that satisfy

R̂ab = N(YaỸb + ỸaYb)
∇̂aYa − (Y − Ỹ) · Y = 0

dY = Y ∧ Ỹ

Vacuum (stationary) case: N = 1, Ya(= Ga) complex

Static (electrovacuum) case: N = 4, Ya(= Σa) hypercomplex

Comformastationarity

Introducing the 1-form L ≡ ?(Y ∧ Ỹ) York = 0⇔

(Ya − Ỹa)Le + η̂bce(Ỹb∇̂cYa + Yb∇̂cỸa)− 1

2
ĥabη̂

bce∇̂c(Y · Ỹ) = 0.



Common framework

Solve the system. Sketch:

1 Case Y · Y = 0:

Vacuum: G ·G = 0 ⇒ flat. (Lukács, Perjés and Sebestyén, 1983)

Static: Σ · Σ = 0 ⇒ flat: trivial



Common framework

Solve the system. Sketch:

1 Case Y · Y = 0 ⇒ flat.

2 Case La 6= 0: Take the basis {La,Ya, Ỹa}.
One of the Y ork = 0 eqs. reads L ∧ dL = 0. ⇒ L = ι χdϕ.
dY = Y ∧ Ỹ ⇒ ∃ composed σ;

Y =
1

σ + σ̃
dσ

Vacuum: σ(= E) = e2U + iΩ is the Ernst potential
Static: σ = 1

2 (eU + jΨ)
Use the three potentials σ, σ̃ and ϕ as coordinates.
Write down the equations, and study the compatibility
conditions, in particular for N = 1 and N = 4.
Some long calculations show that there are no solutions.



Common framework

Solve the system. Sketch:

1 Case Y · Y = 0 ⇒ flat.

2 Case La 6= 0: Is empty ⇒ La = 0 necessarily, i.e. Y ‖ Ỹ

Theorem

Conformastationary vacuum spacetimes are always characterised by a
functional relation between the potentials U and Ω. Perjés (1986a), Perjés(1986b)

Theorem

Conformastat electrovacuum spacetimes are always characterised by a
functional relation between the potentials U and Ψ.



Conformastat electrovacuum: complete solution

Divergence equation for Ya firstly fixes, for an arbitrary constant k,

e2U = 1− 2kΨ + Ψ2.

Can be rewritten in parametric form in terms of an auxiliary function V as

k2 = 1 : Ψ = k − 1/V, e2U = V −2,

k2 > 1 : Ψ = k −
√
k2 − 1 cothV, e2U = (k2 − 1) sinh−2 V,

k2 < 1 : Ψ = k −
√

1− k2 cotV, e2U = (1− k2) sin−2 V.

Secondly, implies ∇̂2V = 0 in all cases. The Ricci equations read

k2 = 1 : R̂ab = 0,

k2 > 1 : R̂ab = 2V,aV,b,

k2 < 1 : R̂ab = −2V,aV,b.

The remaining equations for ĥab and Va: York= 0.



Conformastat electrovacuum: complete solution

ĥab Ricci scalar ΩAB

R̂ = 0 any Majumdar-Papapetrou

R̂ > 0 flat Plane-symmetric field
spherical Bertotti-Robinson

Reissner-Nordström M2 −Q2 > 0
hyperbolic hyperbolic Reissner-Nordström

R̂ < 0 ⇒spherical Bertotti-Robinson
Reissner-Nordström M2 −Q2 < 0

Corollary 1:

Improved (local) characterisation of Majumdar-Papapetrou

Before: static electrovacuum spacetime with flat ĥab (R̂ab = 0)
New:
static electrovacuum spacetime with conformally flat ĥab and R̂ = 0
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Corollary 2:

Global consideration

The conformastat electrovacuum asymptotically flat spacetimes are

the AF Majumdar-Papapetrou

and the Reissner-Nordström static exterior
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