The complete solution of the conformastat electrovacuum problem

Guillermo A González¹ and Raül Vera²

¹Universidad Industrial de Santander (Colombia)

²Universidad del País Vasco/Euskal Herriko Unibertsitatea

Spanish Relativity Meeting ERE2010 Dedicated to the memory of S Brian Edgar

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Conformastationary and conformastat spacetimes

Stationary spacetime $(\mathcal{M}, g_{\mu\nu})$: local coordinates $\{t, x^a\} \exists$;

$$ds^{2} = -e^{2U}(dt + A_{a}dx^{a})^{2} + e^{-2U}\hat{h}_{ab}dx^{a}dx^{b},$$

where U, A_a and \hat{h}_{ab} do not depend on t. U and A_a live on (Σ_3, \hat{h}_{ab}) Static spacetime: $A_a = 0$.

Conformastationary spacetime: stationary spacetime where (Σ_3, \hat{h}_{ab}) is conformally flat \Leftrightarrow the York tensor density vanishes

$$Y_a^{\ e} = \hat{\eta}^{bce} \left(2\hat{\nabla}_c \widehat{R}_{ba} - \frac{1}{2}\hat{h}_{ab}\hat{\nabla}_c \widehat{R} \right) = 0$$

 \widehat{R}_{ab} , $\widehat{
abla}$ and $\widehat{\eta}_{abc}$ relative to \widehat{h}_{ab} $Y_{ae} = Y_{ea}$ and $Y_a{}^a = 0$.

Conformastat spacetimes: conformastationary spacetimes which are **static**.

Electrovacuum spacetime: solution of the Einstein-Maxwell field equations outside the sources.

All conformastat electrovacuum spacetimes	(inheriting)
correspond to either	
 the Majumdar-Papapetrou class of spacetimes 	
• the static plane-symmetric Einstein-Maxwell fields	
• the Bertotti-Robinson conformally flat solution	
• the non-extreme Reissner-Nordström static solution	on
• or the hyperbolic counterpart of the Reissner-Nord static solution	dström

$$ds^{2} = -\frac{1}{V^{2}}dt^{2} + V^{2}(dx^{2} + dy^{2} + dz^{2}) \qquad \forall \quad \hat{\nabla}^{2}V = 0, \qquad \Phi = -e^{i\theta}\frac{1}{V}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Electrovacuum spacetime: solution of the Einstein-Maxwell field equations outside the sources.

$$ds^{2} = -\frac{(r+b)b}{r^{2}}d\tau^{2} + \frac{r^{2}}{(r+b)b}dr^{2} + r^{2}(d\vartheta^{2} + d\varphi^{2}), \qquad \Phi = e^{i\theta}\frac{b}{r}$$

Electrovacuum spacetime: solution of the Einstein-Maxwell field equations outside the sources.

$$ds^{2} = -\sinh^{2}\left(\frac{z}{b}\right)d\tau^{2} + dz^{2} + b^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}), \quad \Phi = e^{i\theta}\cosh\left(\frac{z}{b}\right)$$

Electrovacuum spacetime: solution of the Einstein-Maxwell field equations outside the sources.

$$ds^{2} = -\left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)d\tau^{2} + \left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}), \Phi = e^{i\theta}\frac{Q}{r}$$

Electrovacuum spacetime: solution of the Einstein-Maxwell field equations outside the sources.

All conformastat electrovacuum spacetimes	(inheriting)
correspond to either	
• the Majumdar-Papapetrou class of spacetimes	
• the static plane-symmetric Einstein-Maxwell fields	
 the Bertotti-Robinson conformally flat solution 	
• the non-extreme Reissner-Nordström static solution	on
 or the hyperbolic counterpart of the Reissner-Nor static solution 	dström

$$ds^{2} = -\left(-1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)d\tau^{2} + \left(-1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}(d\vartheta^{2} + \sinh^{2}\vartheta d\varphi^{2}), \Phi = e^{i\theta}\frac{Q}{r}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Electrovacuum field equations

Inheriting Maxwell fields: $F_{\alpha\beta}$ for which $\mathcal{L}_{\partial t} \mathbf{F} = 0$. The **Einstein-Maxwell equations outside the sources** imply \exists

- $\Phi(x^a)$ the electromagnetic potential
- $\mathcal{E}(x^a)$ the **Ernst potential**

; $H_a \equiv (\Re \mathcal{E} + \Phi \overline{\Phi})^{-1/2} \Phi_{,a}, \quad G_a \equiv 1/2 (\Re \mathcal{E} + \Phi \overline{\Phi})^{-1} (\mathcal{E}_{,a} + 2 \overline{\Phi} \Phi_{,a})$ satisfy

$$\begin{split} \widehat{R}_{ab} &= G_a \overline{G}_b + \overline{G}_a G_b - (H_a \overline{H}_b + \overline{H}_a H_b), \\ \widehat{\nabla}^a H_a &+ \frac{1}{2} \overline{G} \cdot H - \frac{3}{2} G \cdot H = 0, \\ \widehat{\nabla}^a G_a - \overline{H} \cdot H - (G - \overline{G}) \cdot G = 0. \end{split}$$

Integrability conditions for the two potentials:

 $dH = H \wedge \Re G \qquad dG = G \wedge \overline{G} + \overline{H} \wedge H.$

Metric determined by

 $e^{2U} = \Re \mathcal{E} + \Phi \overline{\Phi}, \quad \mathrm{d}A_{ab} = 2e^{-4U} \hat{\eta}_{abc} \Im G^c.$

Electrovacuum field equations

Inheriting Maxwell fields: $F_{\alpha\beta}$ for which $\mathcal{L}_{\partial t} \mathbf{F} = 0$. The **Einstein-Maxwell equations outside the sources** imply \exists

- $\Phi(x^a)$ the electromagnetic potential
- $\mathcal{E}(x^a)$ the **Ernst potential**

; $H_a \equiv (\Re \mathcal{E} + \Phi \overline{\Phi})^{-1/2} \Phi_{,a}, \quad G_a \equiv 1/2 (\Re \mathcal{E} + \Phi \overline{\Phi})^{-1} (\mathcal{E}_{,a} + 2 \overline{\Phi} \Phi_{,a})$ satisfy

$$\begin{split} \widehat{R}_{ab} &= G_a \overline{G}_b + \overline{G}_a G_b - (H_a \overline{H}_b + \overline{H}_a H_b), \\ \widehat{\nabla}^a H_a &+ \frac{1}{2} \overline{G} \cdot H - \frac{3}{2} G \cdot H = 0, \\ \widehat{\nabla}^a G_a - \overline{H} \cdot H - (G - \overline{G}) \cdot G = 0. \end{split}$$

Integrability conditions for the two potentials:

$$dH = H \wedge \Re G$$
 $dG = G \wedge \overline{G} + \overline{H} \wedge H.$

Metric determined by

 $e^{2U} = \Re \mathcal{E} + \Phi \overline{\Phi}, \quad \mathrm{d}A_{ab} = 2e^{-4U} \hat{\eta}_{abc} \Im G^c.$

Electrovacuum field equations

Inheriting Maxwell fields: $F_{\alpha\beta}$ for which $\mathcal{L}_{\partial t} \mathbf{F} = 0$. The **Einstein-Maxwell equations outside the sources** imply \exists

- $\Phi(x^a)$ the electromagnetic potential
- $\mathcal{E}(x^a)$ the **Ernst potential**

; $H_a \equiv (\Re \mathcal{E} + \Phi \overline{\Phi})^{-1/2} \Phi_{,a}, \quad G_a \equiv 1/2 (\Re \mathcal{E} + \Phi \overline{\Phi})^{-1} (\mathcal{E}_{,a} + 2 \overline{\Phi} \Phi_{,a})$ satisfy

$$\begin{split} \widehat{R}_{ab} &= G_a \overline{G}_b + \overline{G}_a G_b - (H_a \overline{H}_b + \overline{H}_a H_b), \\ \widehat{\nabla}^a H_a &+ \frac{1}{2} \overline{G} \cdot H - \frac{3}{2} G \cdot H = 0, \\ \widehat{\nabla}^a G_a - \overline{H} \cdot H - (G - \overline{G}) \cdot G = 0. \end{split}$$

Integrability conditions for the two potentials:

$$dH = H \wedge \Re G \qquad dG = G \wedge \overline{G} + \overline{H} \wedge H.$$

Metric determined by

 $e^{2U} = \Re \mathcal{E} + \Phi \overline{\Phi}, \quad \mathrm{d}A_{ab} = 2e^{-4U} \hat{\eta}_{abc} \Im G^c.$

Vacuum stationary and electro-magnetostatic cases

Vacuum Case: $\Phi = 0$, so that $H_a = 0$ and hence EM eqs. read

$$\begin{split} \widehat{R} &= G_a \overline{G}_b + \overline{G}_a G_b, \\ \widehat{\nabla}^a G_a - (G - \overline{G}) \cdot G &= 0. \end{split}$$

Integrability for potentials: $dG = G \wedge \overline{G}$.

 $\begin{array}{ll} \mbox{Static Case:} \ G_a - \overline{G}_a = 0. \\ \mbox{Then } G_a = U_{,a} \ \mbox{and also } \overline{H}_a = e^{-2i\theta} H_a \ \mbox{for constant } \theta. \\ \mbox{Define } X_a \equiv e^{-i\theta} H_a = e^{-U} \Psi_{,a} \qquad \mbox{where } \Psi \equiv e^{-i\theta} \Phi \ \mbox{is real.} \\ \mbox{EM eqs. reduce to} \end{array}$

$$\widehat{R} = 2(G_a G_b - X_a X_b),$$

$$\widehat{\nabla}^a X_a - G \cdot X = 0,$$

$$\widehat{\nabla}^a G_a - X \cdot X = 0.$$

Integrability for potentials:

$$dH = H \wedge G, \quad dG = 0.$$

Vacuum stationary and electro-magnetostatic cases

Vacuum Case: $\Phi = 0$, so that $H_a = 0$ and hence EM eqs. read

$$\begin{split} \widehat{R} &= G_a \overline{G}_b + \overline{G}_a G_b, \\ \widehat{\nabla}^a G_a - (G - \overline{G}) \cdot G &= 0. \end{split}$$

Integrability for potentials: $dG = G \wedge \overline{G}$.

 $\begin{array}{l} \mbox{Static Case: } G_a - \overline{G}_a = 0. \\ \mbox{Then } G_a = U_{,a} \mbox{ and also } \overline{H}_a = e^{-2i\theta} H_a \mbox{ for constant } \theta. \\ \mbox{Define } X_a \equiv e^{-i\theta} H_a = e^{-U} \Psi_{,a} \mbox{ where } \Psi \equiv e^{-i\theta} \Phi \mbox{ is real.} \\ \mbox{Define } \Sigma_a \equiv \frac{1}{2} (U_{,a} + j X_a). \\ \mbox{(hypercomplex plane } j; \ j^2 = 1 \mbox{ with conjugation } \check{j} = -j). \mbox{ EM eqs. read} \end{array}$

$$\begin{split} \widehat{R}_{ab} &= 4(\Sigma_a \breve{\Sigma}_b + \breve{\Sigma}_a \Sigma_b), \\ \widehat{\nabla}^a \Sigma_a - (\Sigma - \breve{\Sigma}) \cdot \Sigma &= 0. \\ \text{Integrability for potentials:} \qquad d\Sigma &= \Sigma \wedge \breve{\Sigma}. \end{split}$$

< ロ ト < 団 ト < 三 ト < 三 ト 三 の < ○</p>

- Denote by ι both i and j, so that $\iota^2 = \pm 1$ accordingly, and by the general conjugation.
- Consider a "composed" vector field \mathcal{Y}^a and a metric \widehat{h}_{ab} that satisfy

$$\begin{aligned} \widehat{R}_{ab} &= N(\mathcal{Y}_a \widetilde{\mathcal{Y}}_b + \widetilde{\mathcal{Y}}_a \mathcal{Y}_b) \\ \widehat{\nabla}^a \mathcal{Y}_a &- (\mathcal{Y} - \widetilde{\mathcal{Y}}) \cdot \mathcal{Y} = 0 \\ \mathrm{d}\mathcal{Y} &= \mathcal{Y} \wedge \widetilde{\mathcal{Y}} \end{aligned}$$

- Vacuum (stationary) case: N = 1, $\mathcal{Y}_a(=G_a)$ complex
- Static (electrovacuum) case: N = 4, $\mathcal{Y}_a(=\Sigma_a)$ hypercomplex

Comformastationarity

Introducing the 1-form $L \equiv \star (\mathcal{Y} \wedge \widetilde{\mathcal{Y}})$ York $= 0 \Leftrightarrow$

$$(\mathcal{Y}_a - \widetilde{\mathcal{Y}}_a)L^e + \hat{\eta}^{bce}(\widetilde{\mathcal{Y}}_b\hat{\nabla}_c\mathcal{Y}_a + \mathcal{Y}_b\hat{\nabla}_c\widetilde{\mathcal{Y}}_a) - \frac{1}{2}\hat{h}_{ab}\hat{\eta}^{bce}\hat{\nabla}_c(\mathcal{Y}\cdot\widetilde{\mathcal{Y}}) = 0.$$

Solve the system. Sketch:

① Case $\mathcal{Y} \cdot \mathcal{Y} = 0$:

- Vacuum: $G \cdot G = 0 \Rightarrow$ flat.
- Static: $\Sigma \cdot \Sigma = 0 \Rightarrow$ flat: trivial

(Lukács, Perjés and Sebestyén, 1983)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Solve the system. Sketch:

2 Case $L_a \neq 0$: Take the basis $\{L_a, \mathcal{Y}_a, \widetilde{\mathcal{Y}}_a\}$.

- One of the York = 0 eqs. reads $L \wedge dL = 0$. $\Rightarrow L = \iota \chi d\varphi$.
- $d\mathcal{Y} = \mathcal{Y} \land \mathcal{Y} \Rightarrow \exists \text{ composed } \sigma;$

$$\mathcal{Y} = \frac{1}{\sigma + \widetilde{\sigma}} \mathrm{d}\sigma$$

Vacuum: $\sigma(=\mathcal{E}) = e^{2U} + i\Omega$ is the Ernst potential Static: $\sigma = \frac{1}{2}(e^U + j\Psi)$

• Use the three potentials σ , $\tilde{\sigma}$ and φ as coordinates. Write down the equations, and study the compatibility conditions, in particular for N = 1 and N = 4. Some long calculations show that **there are no solutions**.

Solve the system. Sketch:

• Case $\mathcal{Y} \cdot \mathcal{Y} = 0 \Rightarrow$ flat.

2 Case $L_a \neq 0$: Is empty $\Rightarrow L_a = 0$ necessarily, i.e. $\mathcal{Y} \parallel \widetilde{\mathcal{Y}}$

Theorem

Conformastationary vacuum spacetimes are always characterised by a functional relation between the potentials U and Ω . Perjés (1986a), Perjés(1986b)

Theorem

Conformastat electrovacuum spacetimes are always characterised by a functional relation between the potentials U and Ψ .

Conformastat electrovacuum: complete solution

Divergence equation for \mathcal{Y}_a firstly fixes, for an arbitrary constant k,

$$e^{2U} = 1 - 2k\Psi + \Psi^2.$$

Can be rewritten in parametric form in terms of an auxiliary function \boldsymbol{V} as

$$\begin{split} k^2 &= 1: & \Psi = k - 1/V, & e^{2U} = V^{-2}, \\ k^2 &> 1: & \Psi = k - \sqrt{k^2 - 1} \coth V, & e^{2U} = (k^2 - 1) \sinh^{-2} V, \\ k^2 &< 1: & \Psi = k - \sqrt{1 - k^2} \cot V, & e^{2U} = (1 - k^2) \sin^{-2} V. \end{split}$$

Secondly, implies $\hat{
abla}^2 V = 0$ in all cases. The Ricci equations read

$$\begin{split} k^2 &= 1: & \widehat{R}_{ab} = 0, \\ k^2 &> 1: & \widehat{R}_{ab} = 2V_{,a}V_{,b}, \\ k^2 &< 1: & \widehat{R}_{ab} = -2V_{,a}V_{,b}. \end{split}$$

The remaining equations for \hat{h}_{ab} and V_a : York= 0.

Conformastat electrovacuum: complete solution

\widehat{h}_{ab} Ricci scalar	Ω_{AB}		
$\widehat{R} = 0$	any	Majumdar-Papapetrou	
$\widehat{R} > 0$	flat	Plane-symmetric field	
	spherical	Bertotti-Robinson	
		Reissner-Nordström	$M^2 - Q^2 > 0$
	hyperbolic	hyperbolic Reissner-Nordström	
$\widehat{R} < 0$	\Rightarrow spherical	Bertotti-Robinson	
		Reissner-Nordström	$M^2 - Q^2 < 0$

Corollary 1:

Improved (local) characterisation of Majumdar-Papapetrou

Before: static electrovacuum spacetime with flat \hat{h}_{ab} ($\hat{R}_{ab} = 0$) New: static electrovacuum spacetime with conformally flat \hat{h}_{ab} and $\hat{R} = 0$

Conformastat electrovacuum: complete solution

\widehat{h}_{ab} Ricci scalar	Ω_{AB}		
$\widehat{R} = 0$	any	Majumdar-Papapetrou	
$\widehat{R} > 0$	flat	Plane-symmetric field	
	spherical	Bertotti-Robinson	
		Reissner-Nordström	$M^2 - Q^2 > 0$
	hyperbolic	hyperbolic Reissner-Nordström	
$\widehat{R} < 0$	\Rightarrow spherical	Bertotti-Robinson	
		Reissner-Nordström	$M^2 - Q^2 < 0$

Corollary 2:

Global consideration

The conformastat electrovacuum asymptotically flat spacetimes are

- the AF Majumdar-Papapetrou
- and the Reissner-Nordström static exterior