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Motivation

Characterising slices in the Kerr spacetime?

Objective of this talk:

Illustrate the interaction between mathematical Relativity (Exact Solutions,
Analysis) and computer methods (Computer Algebra, Numerics) through an
example of my own research —done in collaboration with T. Bäckdahl and A.
Garćıa Parrado.

A problem:

Given a solution to the Einstein
vacuum constraints, (S, hij ,Kij),
under which conditions is it a slice
of the Kerr spacetime?
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Motivation

Difficulties in the interaction

A further objective of the talk:

Exemplify the difficulties in the interaction...

Some examples of this in this talk:

Different languages and methods —e.g. use of spinors in the analysis.

Different objectives:

Mathematical relativists enjoy problems with a lot of structure and want to
prove theorems.
Numerical relativists want (not too computationally taxing) tools to analyse
their numerically constructed solutions.
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Motivation

Motivations to study characterisations of Kerr data

Numerical Relativity:

In numerical simulations of dynamical black hole spacetimes (which make use of 3+1
formulations of GR), one expects that the final state will be close to Kerr/Schwarzschild.

Can one make invariant statements about this?

Non-linear stability of Kerr:

One expects that a dynamical spacetime which is the development of data close to Kerr
data will have the same asymptotic structure as Kerr.

What does it mean to be close to Kerr? (either at the data or spacetime level)

Construction of initial data sets:

There is a number of conjectures about the existence/non-existence of certain types of
hypersurfaces in Kerr/Schwarzschild. An invariant characterisation of data could be of
use to construct the required data or to conclude that they do not exist.
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Motivation

A simple example: slices of Minkowski spacetime

Local solution to the problem of characterisation of initial data:

The pair (hij ,Kij) of symmetric tensors corresponds (locally) to the first and
second fundamental form of a slice S in Minkowski spacetime if and only if

D[iKj]l = 0,
rijkl = −2Kk[iKj]l.

A global characterisation (Schoen & Yau):

The pair, (hij ,Kij), of smooth asymptotically Euclidean symmetric tensors
corresponds (locally) to the first and second fundamental form of a slice S in
Minkowski spacetime if and only if its ADM mass is zero.
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Invariant characterisations of Kerr
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Invariant characterisations of Kerr

The input from the theory of Exact Solutions

First task:

Find a suitable invariant (spacetime) characterisation of the Kerr solution.

Observation:

There are a number of such characterisations in the literature.

Further requirements:

Should be amenable to a 3+1 decomposition.

Should be as simple as possible (this may require including global conditions).

Should be amenable to analytic methods (purely algebraic conditions are not
that ideal).
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Invariant characterisations of Kerr

Some invariant characterisations of Kerr

Some characterisations of the Kerr spacetime:

There exist already some local characterisations of the Kerr spacetime and of
Kerr data:

A characterisation in terms of the Mars-Simon tensor (Mars, 1999-2000).
A characterisation in terms of concomitants of the Weyl tensor (Ferrando &
Sáez, 2009).
A characterisation in terms of Killing spinors

Penrose, Hugston, Sommers, Walker, Floyd (1970’s); A. Garćıa-Parrado, T.
Bäckdahl, JAVK (2007-2010).

Observation:

In practice a combination of all of the above is what works best!
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Invariant characterisations of Kerr

Killing spinors as a characterisation of type D spacetimes

Observation:

The Weyl tensor of the Kerr spacetime is (everywhere) of Petrov type D.

Rationale:

Characterisations in terms of the algebraic conditions determining the Petrov
type (e.g. type D) are cumbersome.

Can one find a way of using the Petrov type in an indirect manner?

Killing spinors:

A Killing spinor is a totally symmetric spinor κAB = κ(AB) satisfying

∇Q′(QκAB) = 0.

Observation:

Equivalent to have a conformal Killing-Yano tensor:

∇(µKν)λ = 0, Kµν = −Kνµ.
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Invariant characterisations of Kerr

A characterisation of Kerr:

Theorem

Let (M, gµν) be a smooth vacuum spacetime such that

ΨABCD 6= 0, ΨABCDΨABCD 6= 0.

The spacetime is locally isometric to the Kerr spacetime if and only if the
following conditions are satisfied:

there exists a Killing spinor κAB such that ξAA′ ≡ ∇QA′κAQ is real.

the spacetime has a stationary asymptotically flat ends with non-vanishing
mass in which ξAA′ tends to a time translation.

Observation:

This is essentially a reformulation of a characterisation given by M. Mars
(2000).
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Invariant characterisation of Kerr initial data
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Invariant characterisation of Kerr initial data

A split of the Killing spinor equation

Second task:

Want to rewrite the theorem for the invariant characterisation of the Kerr
spacetime in terms of conditions on initial data on a spacelike hypersurface.

For this, need to encode the existence of a Killing spinor in the spacetime at
the level of initial data.
Need to perform a split of the spacetime Killing spinor equation.

Implementation of the idea:

One requires to perform
lenghty spinorial
computations.

These were carried out in
J.M. Mart́ın Garcia’s
suite xAct for
Mathematica.

notational purposes we define ΩABCDEF ≡ ∇(ABΩCDEF ). One finds:

∇AB∇ABξ = − 1
6K2ξ − 1

2ΩABCDΩABCDξ + 3ΨA
CDF ΩBCDF κAB + ξAB∇ABK

+ 3
4 Ψ̂ABCDξABCD − 9

4ΨABCDξABCD + 2KΩABCDξABCD

− 15
4 ΩABFHΩCD

FHξABCD + 9
2ΩABCD∇F

DξABCF

+ 3
2∇AB∇CDξABCD, (19a)

∇C
(A∇B)Cξ = 1

2ΩABCD∇CDξ − 1
3K∇ABξ, (19b)

∇(AB∇CD)ξ = − 4KΨ(ABC
EκD)E + 1

2 Ψ̂ABCDξ − 5
2ΨABCDξ − 2

3 Ψ̂(ABC
EξD)E

− 10
3 Ψ(ABC

EξD)E + ΩABCDELξEL + 4
3K2ξABCD + 3ΩEFL(ABCξD)

ELF

+ 3Ψ(AB
ELξCD)EL − 3

2ξ(A
ELF ΩBCD)

HΩELFH − 3ΨEL(A
F κELΩBCD)F

− ξELΩELF (AΩBCD)
F + 2

3Kξ(A
EΩBCD)E + 1

2ξELFHΩEL(ABΩCD)FH

− 3ΨE(B
LF κA

EΩCD)LF − 3ΨE(AB
F κELΩCD)LF − ΩELF (BξA

EΩCD)
LF

− 4Kξ(AB
ELΩCD)EL − 1

2ξΩ(AB
ELΩCD)EL + 3

2ξELFHΩE(ABCΩD)LFH

− 2ΩE(BC
HξA

ELF ΩD)LFH + 1
4ξELFHΩABCDΩELFH − 1

3KξΩABCD

+ 1
2ξ(AB

ELΩCD)
FHΩELFH + 2

5ξ(CD∇AB)K + 12
5 ξE(BCD∇A)

EK

− 3ΩE(BCD∇A)
Eξ − 3

2Ω(A
ELF∇CDξB)ELF − 3

2ΩF (A
EL∇D

F ξBC)EL

− 9
2Ω(AB

EL∇D
F ξC)ELF − 9

2∇L(D∇C
EξAB)E

L − 3
2∇L(D∇ELξABC)E

− 6K∇E(DξABC)
E + 3ΩL(AB

E∇LF ξCD)EF − 3Ω(ABC
E∇LF ξD)ELF

− 3κEL∇L(DΨABC)E + 3κ(A
E∇D

LΨBC)EL. (19c)

The equations presented in this section have been deduced using the tensor algebra suite xAct
for Mathematica —see [38].

4.2 Propagation of the Killing spinor equation

A straightforward consequence of the Killing spinor equation (1) in a vacuum spacetime is that:

�κAB = −ΨABCDκCD, (20)

where � ≡ ∇AA�∇AA� . The latter equation is obtained by applying the differential operator ∇AA�

to equation (1) and then using the vacuum commutator relation for the spacetime Levi-Civita
connection.

The wave equation (20) plays a role in the discussion of the propagation of the Killing spinor
equation. More precisely, one has the following result —cfr. [23] for further details.

Lemma 7. Let κAB be a solution to equation (20). Then the corresponding spinor fields HA�ABC

and SAA�BB� will satisfy the system of wave equations

�HA�ABC = 4
Ä
Ψ(AB

PQHC)PQA� +∇(A
Q�

SBC)Q�A�
ä

, (21a)

�SAA�BB� = −∇AA�
�
ΨB

PQRHB�PQR

�−∇BB�
�
ΨA

PQRHA�PQR

�
+2ΨAB

PQSPA�QB� + 2Ψ̄A�B�P
�Q�

SAP �BQ� . (21b)

The crucial observation is that the right hand sides of equations (21a) and (21b) are ho-
mogeneous expressions of the unknowns and their first order derivatives. The hyperbolicity of
equations (21a) and (21b) imply the following result —again, cfr. [23] for further details.

Proposition 8. The development (M, gµν) of an initial data set for the vacuum Einstein field
equations, (S, hab, Kab), has a Killing spinor in the domain of dependence of U ⊂ S if and only

13
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Invariant characterisation of Kerr initial data

What is required in the result?

CA ingredients:

Split of the equations to obtain necessary conditions.

Analysis of the interdependences of the equations to obtain a minimal set of
necessary conditions.

Analysis of the sufficiency of the conditions —this requires the construction
of propagation equations for the Killing spinor equation.

Ancillary: decomposition in terms of irreducible components.

Analytical ingredients:

Propagation equations which are homogeneous in the Killings spinor
equation, so that the result follows by uniqueness of the solutions to this type
of equations.
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Invariant characterisation of Kerr initial data

The Killing spinor initial data equations

Theorem (T Bäckdahl & JAVK, also A Garćıa-Parrado & JAVK)

The development (M, gµν) of an initial data set for the vacuum Einstein field equations,
(S, hij ,Kij), has a Killing spinor if and only if on S there exists a symmetric spinor κAB
satisfying the equations:

∇(ABκCD) = 0, Spatial Killing Spinor Equation

Ψ(ABC
FκD)F = 0, Algebraic Condition 1

3κ(A
E∇BFΨCD)EF + Ψ(ABC

F ξD)F = 0, Algebraic Condition 2

where ξAB ≡
3

2
∇ Q

(A
κB)Q,

and ∇AB is the Sen connection.

Note:

The spinor ΨABCD = EABCD + iBABCD can be calculated from initial data on S via

EABCD = −r(ABCD) −
1

2
KAB

PQKCDPQ +
1

2
KABCDK,

BABCD = −i DQ
(AKBCD)Q.
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Invariant characterisation of Kerr initial data

Constructing an invariant?

Observation:

The Killing spinor equations are overdetermined and have, in general, no
solution.

Question:

Can one suitably generalise the conditions so that they always admit a
solution?

Can one quantify the how much is missing for these equations to be satisfied
(defect or non-Kerness)?
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Invariant characterisation of Kerr initial data

The spatial Killing spinor operator

A closer look:

The operator in the equation

∇(ABκCD) = 0,

is elliptic overdetermined.

Its formal adjoint of the above operator is given by

∇CDξABCD − ΩCDF (A∇B)FκCD, ΩABCD ≡ K(ABCD).

It is elliptic underdetermined.

An elliptic equation!

The composition of the above two operators renders the equation

L(κAB) ≡ ∇CD∇(ABκCD)−ΩCDF (A∇|DF |κB)C −ΩCDF (A∇B)FκCD = 0,

which is elliptic. We call it the approximate spatial Killing spinor equation.
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Invariant characterisation of Kerr initial data

Asymptotically Euclidean data

Assumptions:

We assume (S, hij ,Kij) to be smooth and with 2 asymptotically Euclidean ends.
In every end it is assumed that there are asymptotically Cartesian coordinates such
that:

hij = −
Å

1 +
2m
r

ã
δij + o∞(r−3/2),

Kij = o∞(r−5/2).

Notes:

Standard Kerr data is included.
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Invariant characterisation of Kerr initial data

An existence result

An Ansatz for the solutions:

Let
κAB = κ̊AB + θAB , θAB = o∞(r−1/2),

where

κ̊AB = ∓
√

2
3
xAB ∓ 2

√
2m

3r
xAB , at every end.

Theorem

There exists a smooth unique solution to

∇CD∇(ABκCD) − ΩCDF (A∇|DF |κB)C − ΩCDF (A∇B)FκCD = 0

with the asymptotic behaviour given by the Ansatz.

Observation:

Ancillary results to prove this result require heavy computer algebra
computations —again carried out in xAct.
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Invariant characterisation of Kerr initial data

What is required in this result?

Analytic ingredients:

Ellipticity of the equation.

Fredholm alternative —analysis of the possible obstructions to existence of a
solution.

Have to analyse the Kernel of the operator!

CA ingredients:

The analysis of the asymptotic behaviour of the solution (which is used as
Ansatz) requires CA computations.

The analysis of the Kernel requires heavy computer algebra computations:

Have to show that the third covariant derivative of

ξABCD ≡ ∇(ABκCD),

can be expressed in terms of lower order derivatives. From here it follows that
the Kernel is trivial.
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Invariant characterisation of Kerr initial data

Constructing the invariant

Ingredients:

Let κAB be a solution to the elliptic equation.

In addition, let

J ≡
∫
S
∇(ABκCD)

ÿ�∇ABκCDdµ,

I1 ≡
∫
S
|Algebraic Condition 1|2dµ,

I2 ≡
∫
S
|Algebraic Condition 2|2dµ

The invariant:

I ≡ J + I1 + I2.
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Invariant characterisation of Kerr initial data

The main result

Theorem

Given an asymptotically Euclidean initial data set for the Einstein vacuum field
equations such that ΨABCD 6= 0, ΨABCDΨABCD 6= 0, the invariant I vanishes if
and only if the data set is data for the Kerr spacetime.

Observations:

The invariant I measures the non-Kerrness of the slice (S, hij ,Kij).

The construction can be extended to other settings —e.g. hyperboloids,
outer domains of communication.

Contact with numerical Relativity:

The construction of the invariant is fully amenable to a numerical
implementation.

Requires solving a system of 6 coupled linear elliptic PDE’s.

The use of spinor is non-essential. Everything can be done tensorially.
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Invariant characterisation of Kerr initial data

Evolution of the invariant?

A sequence of non-Kerrness:

Consider a foliation of spacetime.

On each leave evaluate the invariant:

One obtains a sequence of non-negative
numbers It.

What can be said about the sequence?

Does it satisfy some monotonic behaviour?
Under what conditions?
Is the sequence foliation-dependent?

Input from Numerics:

These issues would benefit from insight from numerical simulations!

Feedback into mathematical GR:

Can numerical simulations benefit from the information that It provides?
What type of physical information can be extracted?
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Invariant characterisation of Kerr initial data

Concluding reflexions:

Global versus local

Are global objects adequate for numerical investigations?

Or rather, should one use something more local?

Which is the closest Kerr?

The invariant discussed here quantifies non-Kerness... However, given
(S, hij ,Kij) can one say which is the closest (or optimal) Kerr solution?

This is of relevance for perturbative methods!
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Invariant characterisation of Kerr initial data

The programme in a snapshot:
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Invariant characterisation of Kerr initial data
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