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Motivation

indirect evidence of black holes
galactic nuclei
X-ray binaries

→ not isolated black hole

the presence of additional matter – influence mainly on higher
derivatives of the metric

configuration and stability of the external source
geodesic motion of test particles – possibility of chaotic motion

interaction of the BH and surroundings ⇒ disc accretion

accretion models – mostly only test discs – is this a good
approximation?

Chaotic systems studied in the literature
infinite thin disc with inner rim and constant mass density –
pseudo-Newtonian potential and full general relativistic
solution
halo with multipole contributions
rotating black holes – approximate solutions
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Our systems of interest

exact solutions (nonlinear GR effects play role)

initially Schwarzschild black hole – central source of field
+ annular thin disc or thin ring – perturbation

family of inverted Morgan-Morgan discs (iMM discs)
(Morgan & Morgan, 1969; Lemos & Letelier, 1994;
Semerák & Žáček, 2000)
family of discs with power-law density profile (PL discs)
(Semerák, 2004)
potential smoother at the inner rim than iMM discs, but much more

computer-time demanding

Bach-Weyl rings
(Bach, Weyl, 1922)
more singular source – one-dimensional

finite total mass M
mass concentrated near the inner rim
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Inverted Morgan-Morgan discs

from (Semerák, 2003)
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Constants of geodesic motion

generally 3 degrees of freedom
(four-velocity fulfil normalization gµνu

µuν = −1)

static axially symmetric system
- two Killing vectors
- two isolating integrals

energy per unit mass at infinity
E = −gttu

t

angular momentum per unit mass at infinity
L = gφφuφ

no other isolating integral due to any symmetry (no
irrecudible Killing tensor: Walker, Penrose, 1970)
→ possibility of chaotic motion

our goal: describe the onset of chaos in the system in
dependence on parameters
compare the influence of different external sources
on the phase space
compare different methods of recognizing chaos
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Methods

Poincare’s surface-of-section method
phase space topology depends on parameters of the disc (M, b)
and of the particle (E , L)

latitudinal action

Jθ =
1

l

∫ √
gθθuθuθdτ

characteristics of time series of a single quantity

power spectrum of the particle’s vertical position, z = z(t)

z(ω) = lim
T→∞

∫ T

0

z(t)eiωtdt

P(ω) = |z(ω)|2

weighted average of directional vectors with varying τ
(Kaplan, Glass, 1992)
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Poincare’s surface of section – L = 3.75M , b = 20M

E = 0.952, M = 0.5M E = 0.955, M = 1.1M

E = 0.955, M = 0.48M
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Bach-Weyl ring with L = 3.75M , b = 20M

E = 0.92, M = 0.5M E = 0.93, M = 0.5M

E = 0.975, M = 0.5M E = 0.977, M = 0.006M

more results (Semerák, Suková, 2010)
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Power spectra - E = 0.956, L = 4M, b = 20M, M = 1.3M

Poincare’s surface of section regular orbits

orbits from ”chaotic sea” sticky motion

sticky motion = 1/f -dependence (Koyama, Kiuchi, Konishi, 2007)
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Average directional vectors

input data – time series of some dynamical quantity
(experimentally measurable)
in our case: z(t) – coordinate-time dependence of the
z-component of particles’ position

reconstruction of 3D phase space by time delay (making
another two copies of the series by shifting it twice by a
chosen time tau)
trajectory coordinates: z(t), z(t − τ), z(t − 2τ)

dividing the phase space into k x k x k grid

determining the normalized directional vector
of the trajectory passing through the box

weighted average Λ =
〈 (Vj/nj )

2−(Rd
nj

)2

1−(Rd
nj

)2

〉
Vj – norm of vector addition of all directional vectors in box j , d = 3
Rd

m – average displacement per step for random walk in d dim. for m steps,

nj – number of passages through box j
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Time series analysis – E = 0.995, L = 3.75M, b = 20M, M = 0.5M

Poincare’s surface of section power spectrum

latitudinal action weighted average of dir. vectors
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