Onset of geodesic chaos in the black hole - disc system

Petra Suková, Oldřich Semerák

Institute of Theoretical Physics Faculty of Mathematics and Physics Charles University in Prague

ERE2010 9. 9. 2010

acknowledgements: D. Heyrovský, L. Šubr, M. Žáček supported from GACR-205/09/H033 and SVV 261301 grants

Petra Suková Onset of geodesic chaos in the black-hole-disc system

4月1日 4月1日 4月1日

Motivation

- indirect evidence of black holes
 - galactic nuclei
 - X-ray binaries
 - \rightarrow not isolated black hole
- the presence of additional matter influence mainly on higher derivatives of the metric
 - configuration and stability of the external source
 - geodesic motion of test particles possibility of chaotic motion
- \bullet interaction of the BH and surroundings \Rightarrow disc accretion
- accretion models mostly only test discs is this a good approximation?
- Chaotic systems studied in the literature
 - infinite thin disc with inner rim and constant mass density pseudo-Newtonian potential and full general relativistic solution
 - halo with multipole contributions
 - rotating black holes approximate solutions

Our systems of interest

- exact solutions (nonlinear GR effects play role)
- initially Schwarzschild black hole central source of field
 + annular thin disc or thin ring perturbation
 - family of inverted Morgan-Morgan discs (iMM discs) (Morgan & Morgan, 1969; Lemos & Letelier, 1994; Semerák & Žáček, 2000)
 - family of discs with power-law density profile (PL discs) (Semerák, 2004)

potential smoother at the inner rim than iMM discs, but much more computer-time demanding

 Bach-Weyl rings (Bach, Weyl, 1922) more singular source - one-dimensional

finite total mass ${\cal M}$

mass concentrated near the inner rim

Figure 1. Radial course of the Newtonian density (12) of the inverted MM counter-rotating discs. The discs with m = 1, 2, 3, ..., 10 are included; in this order, the density becomes smoother at the inner rim (which is fixed to unit Weyl radius) and has a less distinct maximum, of $\frac{3^{3/2}2^{m-1}(m!)^2(2m-1)^{m-1/2}\mathcal{M}}{\pi^2(2m)!(m+1)^{m+1}\beta^2}$, lying at greater radius, $\rho_{\max} = \sqrt{(2/3)(m+1)}b$. The horizontal axis (Weyl radius ρ) is in the units of disc mass \mathcal{M} , while the vertical axis ($w_{\text{HM}}^{(m)}$) is in the units of \mathcal{M}^{-2} .

from (Semerák, 2003)

・ロト ・回ト ・モト ・モト

nar

Constants of geodesic motion

- generally 3 degrees of freedom (four-velocity fulfil normalization $g_{\mu\nu}u^{\mu}u^{\nu}=-1$)
- static axially symmetric system
 - two Killing vectors
 - two isolating integrals
 - energy per unit mass at infinity

$$E = -g_{tt}u^t$$

• angular momentum per unit mass at infinity

$$L = g_{\phi\phi} u^{\phi}$$

- no other isolating integral due to any symmetry (no irrecudible Killing tensor: Walker, Penrose, 1970)
 - \rightarrow possibility of chaotic motion
- our goal: describe the onset of chaos in the system in dependence on parameters compare the influence of different external sources on the phase space compare different methods of recognizing chaos

SQC

Methods

- Poincare's surface-of-section method phase space topology depends on parameters of the disc (*M*, *b*) and of the particle (*E*, *L*)
- latitudinal action

$$J_{\theta} = \frac{1}{l} \int \sqrt{g_{\theta\theta} u^{\theta} u^{\theta}} \mathrm{d}\tau$$

- characteristics of time series of a single quantity
 - power spectrum of the particle's vertical position, z = z(t)

$$z(\omega) = \lim_{T \to \infty} \int_0^T z(t) \mathrm{e}^{\mathrm{i}\omega t} \mathrm{d}t$$
$$P(\omega) = |z(\omega)|^2$$

• weighted average of directional vectors with varying τ (Kaplan, Glass, 1992)

イロト 不得 とうせい かほとう ほ

Poincare's surface of section -L = 3.75M, b = 20M

Petra Suková

Onset of geodesic chaos in the black-hole-disc system

Bach-Weyl ring with L = 3.75M, b = 20M

Power spectra - E = 0.956, L = 4M, b = 20M, M = 1.3M

Petra Suková

Onset of geodesic chaos in the black-hole-disc system

Average directional vectors

- input data time series of some dynamical quantity (experimentally measurable) in our case: z(t) – coordinate-time dependence of the z-component of particles' position
- reconstruction of 3D phase space by time delay (making another two copies of the series by shifting it twice by a chosen time tau)

trajectory coordinates: z(t), $z(t - \tau)$, $z(t - 2\tau)$

Time series analysis – E = 0.995, L = 3.75M, b = 20M, $\mathcal{M} = 0.5M$

Onset of geodesic chaos in the black-hole-disc system

Petra Suková