Onset of geodesic chaos in the black hole - disc system

Petra Suková, Oldřich Semerák

Institute of Theoretical Physics Faculty of Mathematics and Physics

Charles University in Prague

ERE2010
9. 9. 2010
acknowledgements: D. Heyrovský, L. Šubr, M. Žáček supported from GACR-205/09/H033 and SVV 261301 grants

Motivation

- indirect evidence of black holes
- galactic nuclei
- X-ray binaries
\rightarrow not isolated black hole
- the presence of additional matter - influence mainly on higher derivatives of the metric
- configuration and stability of the external source
- geodesic motion of test particles - possibility of chaotic motion
- interaction of the BH and surroundings \Rightarrow disc accretion
- accretion models - mostly only test discs - is this a good approximation?
- Chaotic systems studied in the literature
- infinite thin disc with inner rim and constant mass density -pseudo-Newtonian potential and full general relativistic solution
- halo with multipole contributions
- rotating black holes - approximate solutions

Our systems of interest

- exact solutions (nonlinear GR effects play role)
- initially Schwarzschild black hole - central source of field + annular thin disc or thin ring - perturbation
- family of inverted Morgan-Morgan discs (iMM discs) (Morgan \& Morgan, 1969; Lemos \& Letelier, 1994; Semerák \& Žáček, 2000)
- family of discs with power-law density profile (PL discs) (Semerák, 2004)
potential smoother at the inner rim than iMM discs, but much more computer-time demanding
- Bach-Weyl rings
(Bach, Weyl, 1922)
more singular source - one-dimensional
finite total mass \mathcal{M}
mass concentrated near the inner rim

Inverted Morgan-Morgan discs

Figure 1. Radial course of the Newtonian density (12) of the inverted MM counter-rotating discs. The discs with $m=1,2,3, \ldots, 10$ are included; in this order, the density becomes smoother at the inner rim (which is fixed to unit Weyl radius) and has a less distinct maximum, of $\frac{3^{3 / 2} \cdot 2^{m-1}(m!)^{2}(2 m-1)^{m-1 / 2} \mathcal{M}}{\pi^{2}(2 m)!(m+1)^{m+1} b^{2}}$, lying at greater radius, $\rho_{\max }=\sqrt{(2 / 3)(m+1)} b$. The horizontal axis (Weyl radius ρ) is in the units of disc mass \mathcal{M}, while the vertical axis $\left(w_{\mathrm{iMM}}^{(m)}\right)$ is in the units of \mathcal{M}^{-2}.
from (Semerák, 2003)

Constants of geodesic motion

- generally 3 degrees of freedom
(four-velocity fulfil normalization $g_{\mu \nu} u^{\mu} u^{\nu}=-1$)
- static axially symmetric system
- two Killing vectors
- two isolating integrals
- energy per unit mass at infinity

$$
E=-g_{t t} u^{t}
$$

- angular momentum per unit mass at infinity $L=g_{\phi \phi} u^{\phi}$
- no other isolating integral due to any symmetry (no irrecudible Killing tensor: Walker, Penrose, 1970)
\rightarrow possibility of chaotic motion
- our goal: describe the onset of chaos in the system in dependence on parameters
compare the influence of different external sources on the phase space compare different methods of recognizing chaos

Methods

- Poincare's surface-of-section method phase space topology depends on parameters of the disc (\mathcal{M}, b) and of the particle (E, L)
- latitudinal action

$$
J_{\theta}=\frac{1}{l} \int \sqrt{g_{\theta \theta} u^{\theta} u^{\theta}} \mathrm{d} \tau
$$

- characteristics of time series of a single quantity
- power spectrum of the particle's vertical position, $z=z(t)$

$$
\begin{gathered}
z(\omega)=\lim _{T \rightarrow \infty} \int_{0}^{T} z(t) \mathrm{e}^{\mathrm{i} \omega t} \mathrm{~d} t \\
P(\omega)=|z(\omega)|^{2}
\end{gathered}
$$

- weighted average of directional vectors with varying τ (Kaplan, Glass, 1992)

Poincare's surface of section $-L=3.75 \mathrm{M}, b=20 \mathrm{M}$

Bach-Weyl ring with $L=3.75 \mathrm{M}, b=20 \mathrm{M}$

$E=0.92, \mathcal{M}=0.5 M$

$$
E=0.975, \mathcal{M}=0.5 M
$$

$E=0.93, \mathcal{M}=0.5 M$

$E=0.977, \mathcal{M}=0.006 M$

Power spectra - $E=0.956, L=4 M, b=20 M, \mathcal{M}=1.3 \mathrm{M}$

Poincare's surface of section

orbits from "chaotic sea"

regular orbits

sticky motion

sticky motion $=1 / f$-dependence (Koyama, Kiuchi, Konishi, 2007)

Average directional vectors

- input data - time series of some dynamical quantity (experimentally measurable)
in our case: $z(t)$ - coordinate-time dependence of the z-component of particles' position
- reconstruction of 3D phase space by time delay (making another two copies of the series by shifting it twice by a chosen time tau)
trajectory coordinates: $z(t), z(t-\tau), z(t-2 \tau)$

- dividing the phase space into $k \times k \times k$ grid
- determining the normalized directional vector of the trajectory passing through the box
- weighted average $\Lambda=\left\langle\frac{\left(V_{j} / n_{j}\right)^{2}-\left(R_{n_{j}}^{d}\right)^{2}}{1-\left(R_{n_{j}}^{d}\right)^{2}}\right\rangle$
V_{j} - norm of vector addition of all directional vectors in box $j, d=3$
R_{m}^{d} - average displacement per step for random walk in d dim. for m steps,
n_{j} - number of passages through box j

Time series analysis $-E=0.995, L=3.75 M, b=20 M, \mathcal{M}=0.5 M$
Poincare's surface of section
power spectrum

latitudinal action

weighted average of dir. vectors

