Astrophysical M1ack Fotes as Particle Golliders

Thomas P. Sotiriou
DAMTP, University of Cambridge

in collaboration with:
Ted Jacobson (University of Maryland, College Park)

Based on Phys. Rev. Lett. 104, 021101 (2010) [arXiv:0911.3363 [gr-qc]]
－．E．Arotating black hole

$$
\text { Mass } M
$$

Angular momentum J

$$
a=J / M
$$

－．S．Two particles falling freely from rest at infinity

Mass m
Angular momenta l_{1}, l_{2}

How much can the center of mass energy be？

We know that:
-r. Particles are infinitely blue shifted near the horizon

- S. Pentose process
$\mathscr{H o w e v e r : ~}$
-.f. These do not really reveal what will happen to the center of mass energy for freely falling, colliding particles
- E. No Pentose process has to be involved (though it could)
-.8. There have been claims that center of mass (cm) energy can get infinite
-.E. SMC wouldn't be needed!!
Thomas P. Sotiriou - Spanish Relativity Meeting ERE 2010, Granada

Assume that you are in the local Lorentz frame
-.s. Special relativity in recovered
-.'. the center of mass energy is well known in this case

$$
E_{\mathrm{cm}}^{2}=\left(m u_{1}+m u_{2}\right)^{2}=2 m^{2}\left(1+u_{1} \cdot u_{2}\right)
$$

Simply notice that interpreting the dot product appropriately

$$
u_{1} \cdot u_{2}=\eta_{\mu \nu} u_{1}^{\mu} u_{2}^{\nu} \rightarrow g_{\mu \nu} u_{1}^{\mu} u_{2}^{\nu}
$$

this is a covariant expression and it will hold in any curved background

$$
E_{\mathrm{cm}}^{2}=2 m^{2}\left(1+g_{\mu \nu} u_{1}^{\mu} u_{2}^{\nu}\right)
$$

Rotating black hole

Assuming again equatorial motion on a Serve spacetime

$$
\begin{aligned}
& \left(E_{\mathrm{cm}}^{K e r r}\right)^{2}=\frac{2 m^{2}}{r\left(r^{2}-2 r+a^{2}\right)} \times \\
& \left(2 a^{2}(1+r)-2 a\left(l_{2}+l_{1}\right)-l_{2} l_{1}(-2+r)+2(-1+r) r^{2}\right. \\
& \left.-\sqrt{2\left(a-l_{2}\right)^{2}-l_{2}^{2} r+2 r^{2}} \sqrt{2\left(a-l_{1}\right)^{2}-l_{1}^{2} r+2 r^{2}}\right)
\end{aligned}
$$

Taking the collision to occur at $\quad r=r_{h}=1+\sqrt{1-a^{2}}$
and assuming for simplicity that

$$
a=1
$$

$$
E_{\mathrm{cm}}^{K e r r}\left(r \rightarrow r_{h}\right)=\sqrt{2} m \sqrt{\frac{l_{2}-2}{l_{1}-2}+\frac{l_{1}-2}{l_{2}-2}}
$$

The cm-energy diverges whenever one particle has $l=2$
M. Banados, J. Silk and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)

Thomas P. Sotiriou - Spanish Relativity Meeting ERE 2010, Granada
$V_{\text {eff }}=-\frac{1}{r}+\frac{l^{2}}{2 r^{2}}-\frac{(l-a)^{2}}{r^{3}}$

Types of trajectories:

- Be no turning point
-S. two turning points

- S. trajectories with an unstable orbit for which

$$
\begin{array}{cc}
V_{\mathrm{eff}}=d V_{\mathrm{eff}} / d r=0 & \text { at }
\end{array} \quad r=r_{ \pm}, ~\left(r_{ \pm}=2 \mp a+2 \sqrt{1 \mp a}\right.
$$

Etrumel flack fall

For an extremal black hole we have

$$
a=1 \quad r_{h}=1 \quad r_{+}=1 \quad l_{+}=2
$$

Near the maximum

$$
\begin{gathered}
V_{\mathrm{eff}}=-r_{ \pm}^{-3}\left(r-r_{ \pm}\right)^{2}+\ldots \\
\dot{r}=\sqrt{-2 V_{\mathrm{eff}}} \quad \rightarrow \quad \dot{r} \propto\left(r-r_{ \pm}\right)^{2}+\ldots
\end{gathered}
$$

-.8. Proper time diverges logarithmically as critical radius is approached
-.f. Critical radius coincides with horizon radius and collision radius
－．S．Accretion processes prohibit any spin factor $a \leq 0.998$
－．S．MFOD simulations suggest even smaller $a \leq 0.95$
How will decreasing the spin factor affect the cm－energy？
Tr general we have

$$
\frac{E_{\mathrm{cm}}^{K e r r}}{m}=f\left(a, r_{\mathrm{col}}, l_{1}, l_{2}\right)
$$

We have learned that $l_{1}=l_{+}$is crucial for maximizing the energy

$$
\frac{E_{\mathrm{cm}}^{\max }}{m}=f\left(a, r_{\mathrm{col}}, l_{1}=l_{+}, l_{2}\right)=g\left(a, r_{\mathrm{col}}, l_{2}\right)
$$

-.f. In all case cm-energy grow very rapidly as $a \rightarrow 1$
-.f. Hard to say more from the graph, however qualitative behaviour is the same for all cases

A small parameter analysis can help．Define

$$
\epsilon=1-a
$$

Then one can easily get by expanding

$$
\frac{E_{\mathrm{cm}}^{\max }}{m} \sim A\left(r_{\mathrm{col}}, l_{2}\right) \epsilon^{-1 / 4}+O\left(\epsilon^{1 / 4}\right)
$$

Typical values for $A\left(r_{\mathrm{col}}, l_{2}\right)$
－．f．$\quad r_{\mathrm{col}}=r_{h}, \quad l_{2}=l_{-}, \quad A=4.06$
－．f．$\quad r_{\mathrm{col}}=r_{+}, \quad l_{2}=l_{-}, \quad A=3.70$
．f．$\quad r_{\mathrm{col}}=r_{h}, \quad l_{2}=0, \quad A=2.20$
－．S．$r_{\mathrm{col}}=r_{+}, \quad l_{2}=0, \quad A=2.00$
Thomas P．Sotiriou－Spanish Relativity Meeting ERE 2010，Granada

Taking the best case scenario

$$
\frac{E_{\mathrm{cm}}^{\max }}{m} \sim 4.06 \epsilon^{-1 / 4}+O\left(\epsilon^{1 / 4}\right)
$$

and we get for various values of a

$$
\begin{array}{lll}
\text {.f. } & a=0.9, & \epsilon=0.1,
\end{array} \frac{\frac{E_{\mathrm{cm}}^{\max }}{m} \sim 6.9}{\text {.f. }} \quad a=0.99, \quad \epsilon=0.01, \quad \frac{E_{\mathrm{cm}}^{\max }}{m} \sim 12.5
$$

even for unrealistic spins we don＇t get very high cm－energies

E．Berti，V．Cardoso and L．Gualtieri，F．Pretorius and U．Sperhake，Phys．Rev．Lett．103， 239001 （2009）
Gonsider that after the collision a pair of parties in actually absorbed from the black hole
－．5．The black hole spin is reduced by $\frac{m}{M}$
－f．The cm－energy is reduced as it will scales like $(1-a)^{-1 / 4}$
Also energy will be lost in gravitational wave radiation

$$
E_{\mathrm{tot}} \sim-\log \left[1-\frac{l}{l_{+}}\right] \quad \text { when } \quad l \sim l_{+}
$$

This invalidates the test partide approach

Using black holes as particle colliders is a fascinating idea! Unfortunately several reasons prohibit it:
-.. Astrophysical black holes are not exactly extremal
-.B. Even for extremal black holes only one special trajectory allows infinite energy collisions
-.S. It would still take infinite time
-.f. Back reaction effects would invalidate the approach

Assuming equatorial motion on a Schwarzschild spacetime

$$
\begin{gathered}
\dot{r}^{2} / 2+V_{\mathrm{eff}}(r, l)=0 \\
V_{\mathrm{eff}}(r, l)=-\frac{1}{r}+\frac{l^{2}}{2 r^{2}}-\frac{l^{2}}{r^{3}}
\end{gathered}
$$

For trajectories with no turning points $\quad|l|<4$
Been for collisions on the horizon cm－energy stays finite

$$
E_{\mathrm{cm}}^{S c h w}(r \rightarrow 2)=\frac{m}{2} \sqrt{\left(l_{2}-l_{1}\right)^{2}+16}
$$

so at best we can get

$$
l_{1}=-l_{2}=4 \quad \rightarrow \quad E_{\mathrm{cm}}^{S c h w}(r \rightarrow 2)=2 \sqrt{5} m
$$

A．N．Baushev，arXiv：0805．012［astro－ph］
Thomas P．Sotiriou－Spanish Relativity Meeting ERE 2010，Granada
-.f. Tn general it is not trivial to calculate the energy of the collision products
-.5. Conjecture: collision at the horizon will give upper bound
-.f. Largest cm-energy for such collisions anyway
Advantage: Simple geometrical arguments give the answer
-.5. For one of the collision products to escape its 4-momentum should be at best tangent to the horizon generator
-.8. The 4-momentum of one of the particles will be tangent to the horizon generator as well

We then have
－．8．colliding particles 4－momenta：k, p
－．f．ejecta particles 4－momenta：$\lambda k, p^{\prime}$
4－momentum conservation implies

$$
p+k=p^{\prime}+\lambda k \quad \rightarrow \quad p^{\prime}=p+(1-\lambda) k
$$

All momenta are future pointing so

$$
p^{\prime} \cdot p>0 \quad k \cdot p>0
$$

which can be used to show that

$$
\lambda-1<\frac{p \cdot p}{k \cdot p}=\frac{m^{2}}{\left(E_{\mathrm{cm}}^{2} / 2-m^{2}\right)}
$$

However, we know that

$$
\begin{array}{lll}
E_{\mathrm{cm}} \rightarrow 2 m & \rightarrow & \lambda \rightarrow 2 \\
E_{\mathrm{cm}} \rightarrow \infty & \rightarrow & \lambda \rightarrow 1
\end{array}
$$

which can be turned into the bound

$$
1<\lambda<2
$$

-.f. Thus, the ejecta partide's Tiling energy can be at most $2 m$
-.f. The result does not seem to allow the Penrose process!
-.E. Caveat: conjecture about collision on the horizon!
-.f. Gould it be different if the collision takes place outside?
A. A. Grib and YU. V. Pavlov, arXiv:1001.0756 [gr-qc]

What is instead the collision takes place on the inner horizon?

$$
r_{\text {inner }}=1-\sqrt{1-a^{2}}
$$

It can be shown that particles with angular momenta

$$
\begin{aligned}
2(1-\sqrt{1-a}) & <l<2(1+\sqrt{1-a}) \\
-2(1+\sqrt{1+a}) & <l<-2(1-\sqrt{1+a})
\end{aligned}
$$

reach the inner horizon for $0<a<1$

The center of mass energy appears to diverge there

$$
E_{\mathrm{cm}}^{K e r r}\left(r \rightarrow r_{\text {inner }}\right) \rightarrow \infty
$$

Planck-scale physics before reaching the Planck length?

