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The classical Hawking-Penrose singularity theorem

Theorem (Hawking and Penrose)

Spacetime (in 4 dimensions) is causal geodesically incomplete if the
strong-energy, causality and generic conditions hold and if there is
one of the following:

a closed achronal set without edge,
a closed trapped surface,
a point with re-converging light cone.
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What about co-dimension 3 —a closed spacelike curve?
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We need a unification of the concept of trapping for arbitrary
co-dimension:

=⇒ The mean curvature vector ~H !
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The mean curvature vector: trapped submanifolds

Let (V, g) be an n-dimensional Lorentzian manifold with metric
tensor gµν of signature (−,+, . . . ,+).

Φ : ζ −→ V xµ = Φµ(λA). A,B, · · · = m+ 1, . . . , n

Thus, the tangent vectors (seen on V) are:

~eA ≡ Φ′(∂λA)⇐⇒ eµA =
∂Φµ

∂λA

First fundamental form:

γAB(λ) = g|ζ(~eA, ~eB) = gµν(Φ)eµAe
ν
B

is positive-definite. So, ζ is assumed to be SPACELIKE.

Then, ∀x ∈ ζ
TxV = Txζ ⊕ Txζ⊥

called tangent and normal parts.
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Notation: extrinsic curvature

In particular, we have ∇~eA
~eB = ΓCAB~eC − ~KAB

~K is called the shape tensor or second fundamental form vector of
ζ in V.

The second fundamental form of ζ in (V, g)

relative to any ~n ∈ X(ζ)⊥ is:

KAB(~n) ≡ nµKµ
AB .

These are 2-covariant symmetric tensor fields on ζ.

At each point on ζ there are m linearly independent normal
one-forms. If m > 1 all of these can be chosen to be null if desired.
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Mean curvature vector. Expansions

The mean curvature vector:

X(S)⊥ 3 ~H ≡ γAB ~KAB

The expansion of ζ in (V, g)

relative to any ~n ∈ X(ζ)⊥ is:

θ(~n) ≡ nµHµ = γABKAB(~n).



Future-trapped subamanifolds: ~H is future on ζ

Definition (Trapped submanifold)

A spacelike submanifold ζ is said to be future trapped (f-trapped
from now on) if ~H is timelike and future-pointing everywhere on ζ,
and similarly for past trapped.

Equivalently
θ(~n) < 0 for every future pointing normal ~n.

~H Type of surface
zero stationary or minimal

null and future marginally f-trapped
causal and future weakly f-trapped
timelike future f-trapped
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Notation

nµ: future-pointing normal to the spacelike submanifold ζ,
γ: geodesic curve tangent to nµ at ζ
u: affine parameter along γ (u = 0 at ζ).
Nµ: geodesic vector field tangent to γ (Nµ|u=0 = nµ).
~EA: vector fields defined by parallelly propagating ~eA along γ
( ~EA|u=0 = ~eA)
P νσ ≡ γABEνAEσB (at u = 0 this is the projector to ζ).



Existence of focal points

Proposition

Let ζ be a spacelike submanifold of co-dimension m, and let nµ be
a future-pointing normal to ζ. If θ(~n) ≡ (m− n)c < 0 and the
curvature tensor satisfies the inequality

RµνρσN
µNρP νσ ≥ 0 (1)

along γ, then there is a point focal to ζ along γ at or before
γ|u=1/c, provided γ is defined up to that point.



Remarks:

1 Spacelike hypersurfaces: m = 1, there is a unique timelike
orthogonal direction nµ. Then Pµν = gµν − (NρN

ρ)−1NµNν

and (1) reduces to
RµνN

µNν ≥ 0

(the timelike convergence condition along γ).

2 Spacelike ‘surfaces’: m = 2, there are two independent null
normals on ζ, say nµ and `µ. (Define Lµ parallelly propagating
`µ on γ). Then, Pµν = gµν − (NρL

ρ)−1(NµLν +NνLµ) and
again (1) reduces to

RµνN
µNν ≥ 0

(the null convergence condition along γ).
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The curvature condition

For co-dimension m > 2, the interpretation of condition (1) can be
given physically in terms of tidal forces, or geometrically in terms of
sectional curvatures.

Timelike unit normal nµ
Sectional curvature k(n, e) relative to the plane 〈~n,~e〉 (nµeµ = 0)

Rµνρσn
µeνnρeσ = k(n, e)(nρnρ)(eρeρ) = −k(n, e)(eρeρ)

Hence (1): the sum of the n−m sectional curvatures relative to a
set of independent and mutually orthogonal timelike planes aligned
with nµ is non-positive, and remains so along γ.

In physical terms, this is a statement about the attractiveness of
the gravitational field on average. The tidal force in directions

initially tangent to ζ is attractive on average.



The curvature condition

Null normal nµ
For a null normal nµ one may consider analogously,

Rµνρσn
µeνnρeσ = −k(n, e)(eρeρ)

where nµeµ = 0, and k(n, e) is called the null sectional curvature
relative to the plane spanned by ~n and ~e.

Hence (1): the sum of the n−m null sectional curvatures relative
to a set of independent and mutually orthogonal null planes aligned
with nµ is non-positive, and remains so along γ.



The Penrose singularity theorem

Recall: E+(ζ) ≡ J+(ζ)\I+(ζ)

Proposition (Intermediate result)

Let ζ be a closed f-trapped submanifold of co-dimension m > 1,
and assume that

RµνρσN
µNρP νσ ≥ 0

for any future-pointing null normal nµ. Then, either E+(ζ) is
compact, or the spacetime is future null geodesically incomplete, or
both.

Remark: The case with m = 1 is not included here because it is
trivial. If ζ is a spacelike hypersurface, then E+(ζ) ⊂ ζ —and
actually E+(ζ) = ζ if ζ is achronal—, and the compactness of
E+(ζ) follows readily without any further assumptions.



The Penrose singularity theorem

Theorem (Generalized Penrose singularity theorem)

If (V, g) contains a non-compact Cauchy hypersurface Σ and a
closed f-trapped submanifold ζ of arbitrary co-dimension, and if

RµνρσN
µNρP νσ ≥ 0

holds along every future-directed null geodesic emanating
orthogonally from ζ, then (V, g) is future null geodesically
incomplete.



The Hawking-Penrose singularity theorem

Proposition (Intermediate result)

If (V, g) is strongly causal and there is a closed f-trapped
submanifold ζ of arbitrary co-dimension m > 1 such that

RµνρσN
µNρP νσ ≥ 0

holds along every null geodesic emanating orthogonally from ζ,
then either E+(E+(ζ) ∩ ζ) is compact, or the spacetime is null
geodesically incomplete, or both.



The Hawking-Penrose singularity theorem

Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and strong energy conditions hold and
there is a closed f-trapped submanifold ζ of arbitrary co-dimension
such that

RµνρσN
µNρP νσ ≥ 0

along every null geodesic emanating orthogonally from ζ then the
spacetime is causal geodesically incomplete.

Remarks:
Spacelike hypersurfaces m = 1: no null geodesics orthogonal
to ζ ergo no need to assume (1) (nor anything concerning ~H)
Spacelike ‘surfaces’ m = 2: Condition (1) is actually included
in the strong energy condition.
Points m = n: The ‘same’ happens.

These three cases cover the original Hawking-Penrose theorem.
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Selected applications

The main application of these theorems is, of course, to higher
dimensional spacetimes
thus, they are usable in Kaluza-Klein, string, supergravity,
M-type ... theories.
In dimension 11, say, there are now 10 different possibilities for
the boundary condition in the theorems
this can have relevance in connection with the compactified
extra-dimensions.



Example: instability of spatial extra dimensions?

The classical instability of spatial extra-dimensions was
suggested by Penrose
[2003 On the instability of extra space dimensions, The Future
of Theoretical Physics and Cosmology, ed G W Gibbons et al]

He argues that singularities may develop within a tiny fraction
of a second.
His argument, though, needs some ad-hoc splittings —and
some restrictions on the Ricci tensor—. The reason is that the
theorems were valid only for very few co-dimensions.
Those problems can be avoided by using the generalized
Theorems. It is enough that the compact extra-dimensional
space, or any of its compact less-dimensional subsets, satisfy
the trapping condition
Hence, the basic argument of Penrose acquires a wider
applicability and requires less restrictions.
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Example in 4D: cylindrical symmetry

If n = 4 the new theorems have applications to the cases with
closed trapped curves.

These are curves whose acceleration vector is timelike.
An obvious relevant example is the case of spacetimes with
whole cylindrical symmetry

ds2 = −A2dt2 +B2dρ2 + F 2dϕ2 + E2dz2,

where ∂ϕ, ∂z are spacelike commuting Killing vectors. The
coordinate ϕ is closed with standard periodicity 2π.
The cylinders with constant t and ρ are geometrically
preferred; however, they are not compact in general
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Example in 4D: cylindrical symmetry

Nevertheless, the spacelike curves with constant values of t, ρ
and z are certainly closed. Their mean curvature vector is
proportional to dF . Thus, the causal character of the gradient
of g(∂ϕ, ∂ϕ) characterizes the trapping of these closed circles.

Thereby, many results on incompleteness of geodesics can be
found.
Moreover, there arises a new hypersurface, defined as the set
of points where dF is null, which is a new type of horizon,
being a boundary separating the trapped from the untrapped
circles, and containing marginally trapped circles.
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Appplication: asymptotically de Sitter cosmologies

Theorem
Let (V, g) have all null sectional curvatures non-negative. Suppose
Σ is a compact Cauchy hypersurface for (V, g) which is expanding
to the future in all directions, i.e., which has positive definite
second fundamental form with respect to the future pointing
normal. Then, if π1(Σ) has non-finite cardinality, (V, g) is past null
geodesically incomplete.

Remarks:
The timelike convergence condition is not assumed.
Observe that the timelike convergence condition does not in
general hold in spacetimes which satisfy the Einstein equations
with positive cosmological constant
On the other hand, our condition (1) on tidal forces is satisfied
strictly in the FLRW models, as well as in sufficiently small
perturbations of those models.
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Proof based on the existence of trapped circles

Since Σ is compact we can minimize arc length in the
appropriate free homotopy class to obtain a closed geodesic σ
in Σ.

Since Σ has negative definite second fundamental form with
respect to the past pointing unit normal, one easily verifies
that σ is a past-trapped circle in (V, g).
Then, the Penrose theorem can be applied. Since all the
Cauchy hypersurfaces of (V, g) are compact this does not
directly lead to geodesic incompleteness.
However, passing to a covering spacetime one can get the
result.
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