# Singularity theorems assuming trapped submanifolds of arbitrary dimension

#### José M M Senovilla

Department of Theoretical Physics and History of Science University of the Basque Country, Bilbao, Spain

ERE-2010, Granada, September 2010 In Memoriam S. Brian Edgar (1945-2010)



## Classical singularity theorems

- 2 The mean curvature vector and trapped submanifolds
- Existence of points focal to submanifolds of arbitrary dimension



- 4 Main results: singularity theorems
- **5** Discussion with some applications



イロト スポト メヨト メヨト

G J Galloway and JMMS, *Singularity theorems based on trapped submanifolds of arbitrary co-dimension*, Class. Quantum Grav. **27** 152002 (2010) [arXiv:1005.1249]



## Theorem (Hawking and Penrose)

Spacetime (<u>in 4 dimensions</u>) is causal geodesically incomplete if the strong-energy, causality and generic conditions hold and if there is one of the following:

- a closed achronal set without edge,
- a closed trapped surface,
- a point with re-converging light cone.



#### Theorem (Hawking and Penrose)

Spacetime (<u>in 4 dimensions</u>) is causal geodesically incomplete if the strong-energy, causality and generic conditions hold and if there is one of the following:

- a closed achronal set without edge, (co-dimension 1)
- a closed trapped surface, (co-dimension 2)
- a point with re-converging light cone. (co-dimension 4)



#### Theorem (Hawking and Penrose)

Spacetime (<u>in 4 dimensions</u>) is causal geodesically incomplete if the strong-energy, causality and generic conditions hold and if there is one of the following:

- a closed achronal set without edge, (co-dimension 1)
- a closed trapped surface, (co-dimension 2)
- a point with re-converging light cone. (co-dimension 4)

What about co-dimension 3 —a closed spacelike curve?



We need a unification of the concept of trapping for arbitrary co-dimension:



We need a unification of the concept of trapping for arbitrary co-dimension:

 $\implies$  The mean curvature vector  $\vec{H}$  !



Let  $(\mathcal{V}, g)$  be an *n*-dimensional Lorentzian manifold with metric tensor  $g_{\mu\nu}$  of signature  $(-, +, \ldots, +)$ .



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 →

Let  $(\mathcal{V}, g)$  be an *n*-dimensional Lorentzian manifold with metric tensor  $g_{\mu\nu}$  of signature  $(-, +, \ldots, +)$ .

$$\Phi: \zeta \longrightarrow \mathcal{V} \qquad x^{\mu} = \Phi^{\mu}(\lambda^A). \quad A, B, \dots = m+1, \dots, n$$

Thus, the tangent vectors (seen on  $\mathcal{V}$ ) are:

$$\vec{e}_A \equiv \Phi'(\partial_{\lambda^A}) \iff e^{\mu}_A = \frac{\partial \Phi^{\mu}}{\partial \lambda^A}$$



ヘロト ヘロト ヘビト ヘビト

Let  $(\mathcal{V}, g)$  be an *n*-dimensional Lorentzian manifold with metric tensor  $g_{\mu\nu}$  of signature  $(-, +, \ldots, +)$ .

$$\Phi: \zeta \longrightarrow \mathcal{V} \qquad x^{\mu} = \Phi^{\mu}(\lambda^A). \quad A, B, \dots = m+1, \dots, n$$

Thus, the tangent vectors (seen on  $\mathcal{V}$ ) are:

$$ec{e}_A \equiv \Phi'(\partial_{\lambda^A}) \Longleftrightarrow e^{\mu}_A = rac{\partial \Phi^{\mu}}{\partial \lambda^A}$$

#### First fundamental form:

$$\gamma_{AB}(\lambda) = g|_{\zeta}(\vec{e}_A, \vec{e}_B) = g_{\mu\nu}(\Phi)e^{\mu}_A e^{\nu}_B$$

is *positive-definite*. So,  $\zeta$  is assumed to be SPACELIKE.



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Let  $(\mathcal{V}, g)$  be an *n*-dimensional Lorentzian manifold with metric tensor  $g_{\mu\nu}$  of signature  $(-, +, \ldots, +)$ .

$$\Phi: \zeta \longrightarrow \mathcal{V} \qquad x^{\mu} = \Phi^{\mu}(\lambda^A). \quad A, B, \dots = m+1, \dots, n$$

Thus, the tangent vectors (seen on  $\mathcal{V}$ ) are:

$$ec{e}_A \equiv \Phi'(\partial_{\lambda^A}) \Longleftrightarrow e^{\mu}_A = rac{\partial \Phi^{\mu}}{\partial \lambda^A}$$

#### First fundamental form:

$$\gamma_{AB}(\lambda) = g|_{\zeta}(\vec{e}_A, \vec{e}_B) = g_{\mu\nu}(\Phi)e^{\mu}_A e^{\nu}_B$$

is *positive-definite*. So,  $\zeta$  is assumed to be SPACELIKE.

Then,  $\forall x \in \zeta$ 

$$T_x \mathcal{V} = T_x \zeta \oplus T_x \zeta^\perp$$

called tangent and normal parts.



・ロト ・日 ト ・ モ ト ・ モ ト

# Notation: extrinsic curvature

In particular, we have 
$$\nabla_{\vec{e}_A}\vec{e}_B=\overline{\Gamma}^C_{AB}\vec{e}_C-\vec{K}_{AB}$$



## Notation: extrinsic curvature

In particular, we have 
$$abla_{ec e_A}ec e_B = \overline{\Gamma}^C_{AB}ec e_C - ec K_{AB}$$

 $\vec{K}$  is called the *shape tensor* or *second fundamental form vector* of  $\zeta$  in  $\mathcal{V}$ .



# Notation: extrinsic curvature

In particular, we have 
$$abla_{ec e_A}ec e_B = \overline{\Gamma}^C_{AB}ec e_C - ec K_{AB}$$

 $\vec{K}$  is called the *shape tensor* or *second fundamental form vector* of  $\zeta$  in  $\mathcal{V}$ .

The second fundamental form of  $\zeta$  in  $(\mathcal{V}, g)$ 

relative to any  $\vec{n} \in \mathfrak{X}(\zeta)^{\perp}$  is:

$$K_{AB}(\vec{n}) \equiv n_{\mu} K^{\mu}_{AB} \,.$$

These are 2-covariant symmetric tensor fields on  $\zeta$ .

At each point on  $\zeta$  there are m linearly independent normal one-forms. If m > 1 all of these can be chosen to be null if desired.



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

The mean curvature vector:

$$\mathfrak{X}(S)^{\perp} \ni \vec{H} \equiv \gamma^{AB} \vec{K}_{AB}$$

The expansion of  $\zeta$  in  $(\mathcal{V}, g)$ 

relative to any  $\vec{n} \in \mathfrak{X}(\zeta)^{\perp}$  is:

$$\theta(\vec{n}) \equiv n_{\mu} H^{\mu} = \gamma^{AB} K_{AB}(\vec{n}).$$



< □ > < □ > < □ > < □ > < □ > < □ >

## Definition (Trapped submanifold)

A spacelike submanifold  $\zeta$  is said to be future trapped (f-trapped from now on) if  $\vec{H}$  is timelike and future-pointing everywhere on  $\zeta$ , and similarly for past trapped.

## Equivalently

 $\theta(\vec{n}) < 0$  for every future pointing normal  $\vec{n}$ .



## Definition (Trapped submanifold)

A spacelike submanifold  $\zeta$  is said to be future trapped (f-trapped from now on) if  $\vec{H}$  is timelike and future-pointing everywhere on  $\zeta$ , and similarly for past trapped.

#### Equivalently

 $\theta(\vec{n}) < 0$  for every future pointing normal  $\vec{n}$ .

| $\vec{H}$         | Type of surface       |
|-------------------|-----------------------|
| zero              | stationary or minimal |
| null and future   | marginally f-trapped  |
| causal and future | weakly f-trapped      |
| timelike future   | f-trapped             |



ヘロト 人間ト 人団ト 人団ト

- $n_{\mu}$ : future-pointing normal to the spacelike submanifold  $\zeta$ ,
- $\gamma :$  geodesic curve tangent to  $n^{\mu}$  at  $\zeta$
- u: affine parameter along  $\gamma$  (u = 0 at  $\zeta$ ).
- $N^{\mu}$ : geodesic vector field tangent to  $\gamma$   $(N_{\mu}|_{u=0} = n_{\mu})$ .
- $\vec{E}_A$ : vector fields defined by parallelly propagating  $\vec{e}_A$  along  $\gamma$   $(\vec{E}_A|_{u=0} = \vec{e}_A)$
- $P^{\nu\sigma} \equiv \gamma^{AB} E^{\nu}_A E^{\sigma}_B$  (at u = 0 this is the projector to  $\zeta$ ).



・ロット (雪) ・ (日) ・ (日)

#### Proposition

Let  $\zeta$  be a spacelike submanifold of co-dimension m, and let  $n_{\mu}$  be a future-pointing normal to  $\zeta$ . If  $\theta(\vec{n}) \equiv (m-n)c < 0$  and the curvature tensor satisfies the inequality

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0 \tag{1}$$

イロト イポト イヨト イヨト

along  $\gamma$ , then there is a point focal to  $\zeta$  along  $\gamma$  at or before  $\gamma|_{u=1/c}$ , provided  $\gamma$  is defined up to that point.



## **Remarks:**

• Spacelike hypersurfaces: m = 1, there is a unique timelike orthogonal direction  $n_{\mu}$ . Then  $P_{\mu\nu} = g_{\mu\nu} - (N_{\rho}N^{\rho})^{-1}N_{\mu}N_{\nu}$  and (1) reduces to

$$R_{\mu\nu}N^{\mu}N^{\nu} \ge 0$$

(the timelike convergence condition along  $\gamma$ ).



・ロト ・日 ト ・ モ ト ・ モ ト

• Spacelike hypersurfaces: m = 1, there is a unique timelike orthogonal direction  $n_{\mu}$ . Then  $P_{\mu\nu} = g_{\mu\nu} - (N_{\rho}N^{\rho})^{-1}N_{\mu}N_{\nu}$  and (1) reduces to

$$R_{\mu\nu}N^{\mu}N^{\nu} \ge 0$$

(the timelike convergence condition along  $\gamma$ ).

**2** Spacelike 'surfaces': m = 2, there are two independent null normals on  $\zeta$ , say  $n_{\mu}$  and  $\ell_{\mu}$ . (Define  $L_{\mu}$  parallelly propagating  $\ell_{\mu}$  on  $\gamma$ ). Then,  $P_{\mu\nu} = g_{\mu\nu} - (N_{\rho}L^{\rho})^{-1}(N_{\mu}L_{\nu} + N_{\nu}L_{\mu})$  and again (1) reduces to

$$R_{\mu\nu}N^{\mu}N^{\nu} \ge 0$$

(the null convergence condition along  $\gamma$ ).



## The curvature condition

For co-dimension m > 2, the interpretation of condition (1) can be given physically in terms of tidal forces, or geometrically in terms of sectional curvatures.

Timelike *unit* normal  $n_{\mu}$ 

Sectional curvature k(n,e) relative to the plane  $\langle \vec{n}, \vec{e} \rangle$   $(n_{\mu}e^{\mu}=0)$ 

$$R_{\mu\nu\rho\sigma}n^{\mu}e^{\nu}n^{\rho}e^{\sigma} = k(n,e)(n_{\rho}n^{\rho})(e_{\rho}e^{\rho}) = -k(n,e)(e_{\rho}e^{\rho})$$

Hence (1): the sum of the n-m sectional curvatures relative to a set of independent and mutually orthogonal timelike planes aligned with  $n_{\mu}$  is non-positive, and remains so along  $\gamma$ .

In physical terms, this is a statement about the attractiveness of the gravitational field on average. The tidal force in directions initially tangent to  $\zeta$  is attractive on average.



## Null normal $n_{\mu}$

For a null normal  $n_{\mu}$  one may consider analogously,

$$R_{\mu\nu\rho\sigma}n^{\mu}e^{\nu}n^{\rho}e^{\sigma} = -k(n,e)(e_{\rho}e^{\rho})$$

where  $n_{\mu}e^{\mu} = 0$ , and k(n, e) is called the *null* sectional curvature relative to the plane spanned by  $\vec{n}$  and  $\vec{e}$ .

Hence (1): the sum of the n-m null sectional curvatures relative to a set of independent and mutually orthogonal null planes aligned with  $n_{\mu}$  is non-positive, and remains so along  $\gamma$ .



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

# The Penrose singularity theorem

Recall: 
$$E^+(\zeta) \equiv J^+(\zeta) \setminus I^+(\zeta)$$

## **Proposition (Intermediate result)**

Let  $\zeta$  be a closed f-trapped submanifold of co-dimension m>1, and assume that

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$$

for any future-pointing null normal  $n^{\mu}$ . Then, either  $E^+(\zeta)$  is compact, or the spacetime is future null geodesically incomplete, or both.

**Remark:** The case with m = 1 is not included here because it is trivial. If  $\zeta$  is a spacelike hypersurface, then  $E^+(\zeta) \subset \zeta$  —and actually  $E^+(\zeta) = \zeta$  if  $\zeta$  is achronal—, and the compactness of  $E^+(\zeta)$  follows readily without any further assumptions.



Theorem (Generalized Penrose singularity theorem)

If  $(\mathcal{V}, g)$  contains a non-compact Cauchy hypersurface  $\Sigma$  and a closed f-trapped submanifold  $\zeta$  of arbitrary co-dimension, and if

 $R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$ 

holds along every future-directed null geodesic emanating orthogonally from  $\zeta$ , then  $(\mathcal{V}, g)$  is future null geodesically incomplete.



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

## **Proposition (Intermediate result)**

If  $(\mathcal{V}, g)$  is strongly causal and there is a closed f-trapped submanifold  $\zeta$  of arbitrary co-dimension m > 1 such that

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$$

holds along every null geodesic emanating orthogonally from  $\zeta$ , then either  $E^+(E^+(\zeta) \cap \zeta)$  is compact, or the spacetime is null geodesically incomplete, or both.



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and strong energy conditions hold and there is a closed f-trapped submanifold  $\zeta$  of arbitrary co-dimension such that

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$$

along every null geodesic emanating orthogonally from  $\zeta$  then the spacetime is causal geodesically incomplete.



Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and strong energy conditions hold and there is a closed f-trapped submanifold  $\zeta$  of arbitrary co-dimension such that

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$$

along every null geodesic emanating orthogonally from  $\zeta$  then the spacetime is causal geodesically incomplete.

## Remarks:

• Spacelike hypersurfaces m = 1: no null geodesics orthogonal to  $\zeta$  ergo no need to assume (1) (nor anything concerning  $\vec{H}$ )



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and strong energy conditions hold and there is a closed f-trapped submanifold  $\zeta$  of arbitrary co-dimension such that

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$$

along every null geodesic emanating orthogonally from  $\zeta$  then the spacetime is causal geodesically incomplete.

## Remarks:

- Spacelike hypersurfaces m = 1: no null geodesics orthogonal to  $\zeta$  ergo no need to assume (1) (nor anything concerning  $\vec{H}$ )
- Spacelike 'surfaces' m = 2: Condition (1) is actually included in the strong energy condition.



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and strong energy conditions hold and there is a closed f-trapped submanifold  $\zeta$  of arbitrary co-dimension such that

$$R_{\mu\nu\rho\sigma}N^{\mu}N^{\rho}P^{\nu\sigma} \ge 0$$

along every null geodesic emanating orthogonally from  $\zeta$  then the spacetime is causal geodesically incomplete.

## Remarks:

- Spacelike hypersurfaces m = 1: no null geodesics orthogonal to  $\zeta$  ergo no need to assume (1) (nor anything concerning  $\vec{H}$ )
- Spacelike 'surfaces' m = 2: Condition (1) is actually included in the strong energy condition.
- Points m = n: The 'same' happens.

These three cases cover the original Hawking-Penrose theorem.



- The main application of these theorems is, of course, to higher dimensional spacetimes
- thus, they are usable in Kaluza-Klein, string, supergravity, M-type ... theories.
- In dimension 11, say, there are now 10 different possibilities for the boundary condition in the theorems
- this can have relevance in connection with the *compactified* extra-dimensions.



(日)

• The *classical* instability of spatial extra-dimensions was suggested by Penrose [2003 On the instability of extra space dimensions, *The Future of Theoretical Physics and Cosmology*, ed G W Gibbons et al]



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- The *classical* instability of spatial extra-dimensions was suggested by Penrose [2003 On the instability of extra space dimensions, *The Future of Theoretical Physics and Cosmology*, ed G W Gibbons et al]
- He argues that singularities may develop within a tiny fraction of a second.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- The *classical* instability of spatial extra-dimensions was suggested by Penrose
   [2003 On the instability of extra space dimensions, *The Future* of *Theoretical Physics and Cosmology*, ed G W Gibbons et al]
- He argues that singularities may develop within a tiny fraction of a second.
- His argument, though, needs some ad-hoc splittings —and some restrictions on the Ricci tensor—. The reason is that the theorems were valid only for very few co-dimensions.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- The *classical* instability of spatial extra-dimensions was suggested by Penrose
   [2003 On the instability of extra space dimensions, *The Future* of *Theoretical Physics and Cosmology*, ed G W Gibbons et al]
- He argues that singularities may develop within a tiny fraction of a second.
- His argument, though, needs some ad-hoc splittings —and some restrictions on the Ricci tensor—. The reason is that the theorems were valid only for very few co-dimensions.
- Those problems can be avoided by using the generalized Theorems. It is enough that the compact extra-dimensional space, or *any* of its compact less-dimensional subsets, satisfy the trapping condition



# Example: instability of spatial extra dimensions?

- The *classical* instability of spatial extra-dimensions was suggested by Penrose
   [2003 On the instability of extra space dimensions, *The Future* of *Theoretical Physics and Cosmology*, ed G W Gibbons et al]
- He argues that singularities may develop within a tiny fraction of a second.
- His argument, though, needs some ad-hoc splittings —and some restrictions on the Ricci tensor—. The reason is that the theorems were valid only for very few co-dimensions.
- Those problems can be avoided by using the generalized Theorems. It is enough that the compact extra-dimensional space, or *any* of its compact less-dimensional subsets, satisfy the trapping condition
- Hence, the basic argument of Penrose acquires a wider applicability and requires less restrictions.



• If n = 4 the new theorems have applications to the cases with closed trapped *curves*.



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- If n = 4 the new theorems have applications to the cases with closed trapped *curves*.
- These are curves whose acceleration vector is timelike.



- If n = 4 the new theorems have applications to the cases with closed trapped *curves*.
- These are curves whose acceleration vector is timelike.
- An obvious relevant example is the case of spacetimes with whole cylindrical symmetry

$$ds^{2} = -A^{2}dt^{2} + B^{2}d\rho^{2} + F^{2}d\varphi^{2} + E^{2}dz^{2},$$

where  $\partial_{\varphi}, \partial_z$  are spacelike commuting Killing vectors. The coordinate  $\varphi$  is closed with standard periodicity  $2\pi$ .



・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

- If n = 4 the new theorems have applications to the cases with closed trapped *curves*.
- These are curves whose acceleration vector is timelike.
- An obvious relevant example is the case of spacetimes with whole cylindrical symmetry

$$ds^{2} = -A^{2}dt^{2} + B^{2}d\rho^{2} + F^{2}d\varphi^{2} + E^{2}dz^{2},$$

where  $\partial_{\varphi}, \partial_z$  are spacelike commuting Killing vectors. The coordinate  $\varphi$  is closed with standard periodicity  $2\pi$ .

• The cylinders with constant t and  $\rho$  are geometrically preferred; however, they are *not* compact in general



• Nevertheless, the spacelike curves with constant values of  $t, \rho$ and z are certainly *closed*. Their mean curvature vector is proportional to dF. Thus, the causal character of the gradient of  $g(\partial_{\varphi}, \partial_{\varphi})$  characterizes the trapping of these closed circles.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Nevertheless, the spacelike curves with constant values of  $t, \rho$ and z are certainly *closed*. Their mean curvature vector is proportional to dF. Thus, the causal character of the gradient of  $g(\partial_{\varphi}, \partial_{\varphi})$  characterizes the trapping of these closed circles.
- Thereby, many results on incompleteness of geodesics can be found.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Nevertheless, the spacelike curves with constant values of  $t, \rho$ and z are certainly *closed*. Their mean curvature vector is proportional to dF. Thus, the causal character of the gradient of  $g(\partial_{\varphi}, \partial_{\varphi})$  characterizes the trapping of these closed circles.
- Thereby, many results on incompleteness of geodesics can be found.
- Moreover, there arises a new hypersurface, defined as the set of points where dF is null, which is a new type of horizon, being a boundary separating the trapped from the untrapped circles, and containing marginally trapped circles.



# Appplication: asymptotically de Sitter cosmologies

#### Theorem

Let  $(\mathcal{V}, g)$  have all null sectional curvatures non-negative. Suppose  $\Sigma$  is a compact Cauchy hypersurface for  $(\mathcal{V}, g)$  which is expanding to the future in all directions, i.e., which has positive definite second fundamental form with respect to the future pointing normal. Then, if  $\pi_1(\Sigma)$  has non-finite cardinality,  $(\mathcal{V}, g)$  is past null geodesically incomplete.



・ロト ・ 理ト ・ ヨト ・ ヨト

# Appplication: asymptotically de Sitter cosmologies

#### Theorem

Let  $(\mathcal{V}, g)$  have all null sectional curvatures non-negative. Suppose  $\Sigma$  is a compact Cauchy hypersurface for  $(\mathcal{V}, g)$  which is expanding to the future in all directions, i.e., which has positive definite second fundamental form with respect to the future pointing normal. Then, if  $\pi_1(\Sigma)$  has non-finite cardinality,  $(\mathcal{V}, g)$  is past null geodesically incomplete.

#### Remarks:

- The timelike convergence condition is not assumed.
- Observe that the timelike convergence condition does not in general hold in spacetimes which satisfy the Einstein equations with positive cosmological constant
- On the other hand, our condition (1) on tidal forces is satisfied strictly in the FLRW models, as well as in sufficiently small perturbations of those models.



# Proof based on the existence of trapped circles

• Since  $\Sigma$  is compact we can minimize arc length in the appropriate free homotopy class to obtain a closed geodesic  $\sigma$  in  $\Sigma.$ 



・ロト ・四ト ・ヨト ・ヨト

# Proof based on the existence of trapped circles

- Since  $\Sigma$  is compact we can minimize arc length in the appropriate free homotopy class to obtain a closed geodesic  $\sigma$  in  $\Sigma.$
- Since  $\Sigma$  has negative definite second fundamental form with respect to the *past* pointing unit normal, one easily verifies that  $\sigma$  is a past-trapped circle in  $(\mathcal{V}, g)$ .



- Since  $\Sigma$  is compact we can minimize arc length in the appropriate free homotopy class to obtain a closed geodesic  $\sigma$  in  $\Sigma.$
- Since  $\Sigma$  has negative definite second fundamental form with respect to the *past* pointing unit normal, one easily verifies that  $\sigma$  is a past-trapped circle in  $(\mathcal{V}, g)$ .
- Then, the Penrose theorem can be applied. Since all the Cauchy hypersurfaces of  $(\mathcal{V},g)$  are compact this does not directly lead to geodesic incompleteness.



・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

- Since  $\Sigma$  is compact we can minimize arc length in the appropriate free homotopy class to obtain a closed geodesic  $\sigma$  in  $\Sigma.$
- Since  $\Sigma$  has negative definite second fundamental form with respect to the *past* pointing unit normal, one easily verifies that  $\sigma$  is a past-trapped circle in  $(\mathcal{V}, g)$ .
- Then, the Penrose theorem can be applied. Since all the Cauchy hypersurfaces of  $(\mathcal{V},g)$  are compact this does not directly lead to geodesic incompleteness.
- However, passing to a covering spacetime one can get the result.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト