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Motivation

» Very massive stellar core ~ high entropy core (s/ks>1)

- GRB progenitor candidate (Collapsar model)

Current progenitor models predict 'higher-entropy cores’
- He star merger model (Fryer & Heger 2005)
- Binary interaction model (van den Huevel & Yoon 2007)

- Chemically homogeneous evolution model
(Yoon & Langer 2006, Woosley & Heger 2006)

- Collapse has not been studied in detail
» Evolution in p-T plane is different from that of ordinary SN
- Core rotation
- Essential for BH + Disk formation (e.g. MacFadyen & Woosley 1999)
- Poorly known

» Very rapid rotation is often assumed to guarantee disk formation
* (Relatively) 'SLOWLY' rotating models are not studied in detail
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.In my talk, I present
our resent Full-GR-simulation-results of

collapse of 'slowly’ rotating high entropy core
to BH and Disk

Not detailed, but general feature of collapse is described
For detail, see Sekiguchi & Shibata (2010) to be submitted

- Poorly known
» Very rapid rotation is often assumed to guarantee disk formation
* (Relatively) 'SLOWLY' rotating models are not studied in detail




Setting



Basic equations

Einstein's equations : BSSN formulation

- 4thorder finite difference in space, 37 order Runge-Kutta time evolution
- Gauge conditions : 1+log slicing, dynamical shift

General relativistic hydrodynamics :

- Tuv for neutrinos is also introduced

- High resolution shock capturing scheme

Lepton conservation equations :

Va-l-ba _ _Q tEleak)

a (v,stream) _ ~ (leak)
VaTb XD

- Electron fraction
- Neutrino fractions

See Sekiguchi (2010aq,b) for detail

A BH excision technique
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Summary of microphysics

- EOS
- Any tabulated EOS can be used
- Currently Shen EQS + electrons + radiation + neutrinos

- Weak rates

- e* captures @ FFN 1985, rate on NSE back ground
- e* annihilation:  Cooperstein et al. 1985, Ttoh et al. 1996
- plasmon decay:  Ruffert et al. 1996, Itoh et al. 1996
- Bremsstrahlung: Burrows et al. 2006, Itoh et al. 1996

- Neutrino emissions
- GR neutrino leakage scheme (Sekiguchi 2010a,b)

- Detailed opacities based on Burrows et al. 2006
* (n, p, A) scattering and absorption
- with higher order corrections (e.g, Horowiz 2005)




Initial conditions

Simplified model ( s (entropy per baryon) & Ye are constant )
- s = (5-)8kg , Ye = 0.5, = core mass ~ (8—)15 Msolar

Rotation profiles are added (based on Woosley & Heger 2006)
- 'Slowly’, ‘moderately’, and ‘rapidly’ rotating models
- Initial models are 'SLOWLY rotating' in the sense j < jrsco schen
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Results



Gas pressure dominated bounce
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Moderately rotating model

1033 erg/S 20
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» The core experiences a
gas pressure dominated
bounce and shock is
formed

- The bounce is weak and
the shock becomes an
accretion shock

» This figure shows entropy
contour just before BH
formation

- Animation ||

Time [ms]
1300 1400 1500 1600 1700 1800

10
0

300 — 35

200 A L {30

S0 9

100 - 125

0 -4 20

-100 15

200 10

_

-300 >

-300  -Z200  -100 0 100 200 300

Entropy per Baryon



Moderately rotating model

- Geometrically thin disk is
formed first

- Shocks are formed in inner
region near the surface

* As the matter with higher
J falls, Pgq._and hence,
disk height increase

* Ram pressure decreases

* Also, negative entropy
gradient is developed
(convectively unstable)

* In inner region, shock
heating is stronger and
heutrino cooling is less
efficient

- Disk expands to be a torus
and convection sets in
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Flow is RT, KH, and convectively unstable
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Angular momentum is transported inward

' Negative time-averaged
Reynolds stress

= Inward Angular momentum
transport (cf. CDAF)
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Rapidly
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Neutrino luminosity (1)

» The thin disk emits neutrinos of ~ 10°3 erg/s

- The efficiency is low as ~ 10-3 because thermal energy generated
at the shocks is advected onto BH before emitted by neutrinos

- Expected efficiency is GM,,M /r ~ 0.1Mc?
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Neutrino luminosity (2)

» The convective torus emits neutrinos of ~ 10°* erg/s

- The efficiency is ~ 0.1 which indicates that thermal energy
generated at the shocks is efficiently carried away by neutrinos

- Convective activities induce time-variability in luminosities
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Slowly rotating model

* The thin disk does not expand in our simulation time

- When fluids with higher j fall onto disk in a later phase, the
disk will expand to be a thick torus and convection may set in

» Neutrino luminosity is low as ~ 1033 erg/s
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Rapidly rotating model

Centrifugally supported, geometrically thick torus is

immediately formed because of rapid rotation
Copious neutrino emissions (~ 10°* erg/s ) from the torus

Convection is suppressed due to stabilizing epicyclic mode
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Rapidly rotating model

Centrifugally supported, geometrically thick torus is
immediately formed because of rapid rotation

Copious neutrino emissions (~ 10°* erg/s ) from the torus
Convection is suppressed due to stabilizing epicyclic mode
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Summary

First full GR simulation of collapse of 'slowly’
rotating high entropy core to BH + Disk

Moderately rotating model

- thin Disk = thick Torus transition

- disk emits copious neutrinos

- accretion flow is convectively unstable (cf. CDAF)

- convection induces time-varying neutrino luminosity

Slowly rotating model
- thin disk formation
- the transition might occur in a later phase

Rapidly rotating model
- thick torus is immediately formed
- convection is suppressed due to stabilizing epicyclic mode




