Cylindrically and toroidally symmetric solutions

with a cosmological constant

J. Podolský and J. B. Griffiths

Institute of Theoretical Physics, Prague
Department of Mathematical Sciences, Loughborough

cylindrically symmetric static vacuum solutions

- for $\Lambda=0$: Levi-Civita (1919)

$$
\begin{gathered}
\mathrm{d} s^{2}=-\rho^{4 \sigma / \Sigma} \mathrm{d} t^{2}+\rho^{-4 \sigma(1-2 \sigma) / \Sigma} \mathrm{d} z^{2}+C^{2} \rho^{2(1-2 \sigma) / \Sigma} \mathrm{d} \phi^{2}+\mathrm{d} \rho^{2} \\
\Sigma=1-2 \sigma+4 \sigma^{2}
\end{gathered}
$$

$\rho \ldots$ proper radial distance from the axis $\rho=0$
$\sigma \ldots$ mass per unit length on the axis, but only for $\sigma \in\left(0, \frac{1}{4}\right)$ Minkowski space in cylindrical coordinates when $\sigma=0$

- for $\Lambda \neq 0$: Linet and Tian (1986)

$$
\begin{aligned}
& \mathrm{d} s^{2}=Q^{2 / 3}\left(-P^{-2\left(1-8 \sigma+4 \sigma^{2}\right) / 3 \Sigma} \mathrm{~d} t^{2}\right.+P^{-2\left(1+4 \sigma-8 \sigma^{2}\right) / 3 \Sigma} \mathrm{~d} z^{2} \\
&\left.+C^{2} P^{4\left(1-2 \sigma-2 \sigma^{2}\right) / 3 \Sigma} \mathrm{~d} \phi^{2}\right)+\mathrm{d} \rho^{2} \\
& Q(\rho)=\frac{1}{\sqrt{3|\Lambda|}} \sinh (\sqrt{3|\Lambda|} \rho) \quad \approx \rho \\
& P(\rho)=\frac{2}{\sqrt{3|\Lambda|}} \tanh \left(\frac{\sqrt{3|\Lambda|}}{2} \rho\right) \approx \rho
\end{aligned}
$$

constant-curvature 3 -spaces in cylindrical coordinates

standard metric:

$$
\mathrm{d} s^{2}=R^{2}\left(\frac{\mathrm{~d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

$k=0,+1,-1 \quad$ for $\quad E^{3}, S^{3}, H^{3} \quad$ (see the FLRW cosmology)
introducing $\hat{\rho}, \hat{z}$:

$$
\hat{\rho}=r \sin \theta, \quad \hat{z}, \tan \hat{z}, \tanh \hat{z}=\frac{r \cos \theta}{\sqrt{1-k r^{2}}}
$$

$$
\mathrm{d} s^{2}=R^{2}\left(\left(1-k \hat{\rho}^{2}\right)^{-1} \mathrm{~d} \hat{\rho}^{2}+\left(1-k \hat{\rho}^{2}\right) \mathrm{d} \hat{z}^{2}+\hat{\rho}^{2} \mathrm{~d} \phi^{2}\right)
$$

for $k=0$:

$$
\mathrm{d} s^{2}=R^{2}\left(\mathrm{~d} \hat{\rho}^{2}+\mathrm{d} \hat{z}^{2}+\hat{\rho}^{2} \mathrm{~d} \phi^{2}\right)
$$

flat space E^{3} in cylindrical coordinates: $\hat{\rho}=$ const. are cylinders $R^{1} \times S^{1}$ $\hat{z} \in(-\infty,+\infty), \phi \in[0,2 \pi)$

S^{3} in cylindrical-like coordinates

for $k=+1$ with $\psi \equiv \hat{z}-\frac{\pi}{2}$:

$$
\mathrm{d} s^{2}=R^{2}\left(\left(1-\hat{\rho}^{2}\right)^{-1} \mathrm{~d} \hat{\rho}^{2}+\left(1-\hat{\rho}^{2}\right) \mathrm{d} \psi^{2}+\hat{\rho}^{2} \mathrm{~d} \phi^{2}\right)
$$

3-sphere S^{3} in cylindrical-like coordinates: $\hat{\rho}=$ const. are tori $S^{1} \times S^{1}$ both ψ and ϕ are periodic: $\psi, \phi \in[0,2 \pi)$ two nonintersecting axes at $\hat{\rho}=0$ and $\hat{\rho}=1$ indeed: the explicit parametrisation of S^{3} as $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}=R^{2}$ in $\mathrm{d} s^{2}=\mathrm{d} x_{1}{ }^{2}+\mathrm{d} x_{2}{ }^{2}+\mathrm{d} x_{3}{ }^{2}+\mathrm{d} x_{4}{ }^{2}$ is given by

$$
x_{1}=R \sqrt{1-\hat{\rho}^{2}} \cos \psi \quad x_{3}=R \hat{\rho} \cos \phi
$$

$$
x_{2}=R \sqrt{1-\hat{\rho}^{2}} \sin \psi \quad x_{4}=R \hat{\rho} \sin \phi
$$

that is
$x_{1}^{2}+x_{2}^{2}=R^{2}\left(1-\hat{\rho}^{2}\right) \quad x_{3}^{2}+x_{4}^{2}=R^{2} \hat{\rho}^{2}$
$\frac{x_{2}}{x_{1}}=\tan \psi \quad \frac{x_{4}}{x_{3}}=\tan \phi$
ψ and ϕ are "equivalent" angular coordinates in different orientations

interpreting the Linet-Tian vacuum solution with $\Lambda>0$

in view of the above, we relabel z to ψ and introduce the related conicity parameter B :

$$
\begin{aligned}
\mathrm{d} s^{2}=Q^{2 / 3}\left(-P^{-2\left(1-8 \sigma+4 \sigma^{2}\right) / 3 \Sigma} \mathrm{~d} t^{2}\right. & +B^{2} P^{-2\left(1+4 \sigma-8 \sigma^{2}\right) / 3 \Sigma} \mathrm{~d} \psi^{2} \\
& \left.+C^{2} P^{4\left(1-2 \sigma-2 \sigma^{2}\right) / 3 \Sigma} \mathrm{~d} \phi^{2}\right)+\mathrm{d} \rho^{2}
\end{aligned}
$$

$$
Q(\rho)=\frac{1}{\sqrt{3 \Lambda}} \sin (\sqrt{3 \Lambda} \rho) \quad P(\rho)=\frac{2}{\sqrt{3 \Lambda}} \tan \left(\frac{\sqrt{3 \Lambda}}{2} \rho\right)
$$

3 free parameters: σ, B, C
curvature singularities along the axes $\rho=0$ and $\rho=\frac{\pi}{\sqrt{3 \Lambda}}$
with the corresponding deficit angles $2 \pi(1-C)$ and $2 \pi(1-B)$
each of the two singularities can be removed by replacing the vicinity of the axis by a toroidal part of the dust-filled Einstein static universe (homogeneous, nonsingular) $\mathrm{d} s^{2}=-\mathrm{d} t^{2}+" S^{3}$ " in cylindrical-like coordinates with $\hat{\rho}=\sin \left(\sqrt{\Lambda}\left(\rho-\rho_{0}\right)\right)$:

$$
\mathrm{d} s^{2}=-A_{1}^{2} \mathrm{~d} t^{2}+\frac{B_{1}^{2}}{\Lambda} \cos ^{2}\left(\sqrt{\Lambda}\left(\rho-\rho_{0}\right)\right) \mathrm{d} \psi^{2}+\frac{C_{1}^{2}}{\Lambda} \sin ^{2}\left(\sqrt{\Lambda}\left(\rho-\rho_{0}\right)\right) \mathrm{d} \phi^{2}+\mathrm{d} \rho^{2}
$$

matching conditions

we require that the two metrics and their derivatives are continuous across $\rho=\rho_{1}$ all such conditions can indeed be satisfied by:

$$
\cos \left(\sqrt{3 \Lambda} \rho_{1}\right)=\frac{1-8 \sigma+4 \sigma^{2}}{1-2 \sigma+4 \sigma^{2}}
$$

which uniquely determines ρ_{1} in terms of $\sigma \in\left[0, \frac{1}{4}\right]$, and

$$
\begin{gathered}
\tan ^{2}\left(\sqrt{\Lambda}\left(\rho_{1}-\rho_{0}\right)\right)=\frac{4 \sigma(1-\sigma)}{1-4 \sigma} \\
A_{1}=Q\left(\rho_{1}\right)^{-1 / 3} P\left(\rho_{1}\right)^{\left(1-8 \sigma+4 \sigma^{2}\right) / 3 \Sigma} \\
B_{1}=B \Lambda^{-1 / 2} Q\left(\rho_{1}\right)^{-1 / 3} P\left(\rho_{1}\right)^{\left(1+4 \sigma-8 \sigma^{2}\right) / 3 \Sigma} \cos \left(\sqrt{\Lambda}\left(\rho_{1}-\rho_{0}\right)\right) \\
C_{1}=C \Lambda^{-1 / 2} Q\left(\rho_{1}\right)^{-1 / 3} P\left(\rho_{1}\right)^{-2\left(1-2 \sigma-2 \sigma^{2}\right) / 3 \Sigma} \sin \left(\sqrt{\Lambda}\left(\rho_{1}-\rho_{0}\right)\right)
\end{gathered}
$$

which uniquely determine ρ_{0} and A_{1}, B_{1}, C_{1}

resulting spacetime

- curvature singularity at $\rho=0$ is removed
- it is replaced by the toroidal region $\rho \in\left[\rho_{0}, \rho_{1}\right)$ which is the uniform Einstein static space filled with dust - the matter source (it is regular at the pole ρ_{0} when $C_{1}=1$)
- in the external region $\rho \in\left[\rho_{1}, \frac{\pi}{\sqrt{3 \Lambda}}\right)$ there is the Linet-Tian static vacuum solution
- there remains a curvature singularity at $\rho=\frac{\pi}{\sqrt{3 \Lambda}}$
(alternatively, we can remove this by a toroidal matter source, keeping the singularity at $\rho=0$)

the mass of the source

the total mass of the toroidal dust matter source is

$$
\int_{\rho_{0}}^{\rho_{1}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mu \sqrt{g_{3}} \mathrm{~d} \rho \mathrm{~d} \psi \mathrm{~d} \phi=\frac{2 \pi B_{1} C_{1}}{\sqrt{\Lambda}} \frac{\sigma(1-\sigma)}{\left(1-4 \sigma^{2}\right)} \quad \Rightarrow
$$

the mass per unit length of the toroid is

$$
\frac{\sigma(1-\sigma)}{1-4 \sigma^{2}} \approx \sigma
$$

which is consistent with the expectation as $\Lambda \rightarrow 0$

the "no source" limit $\sigma=0$

with

$$
p(\rho)=\cos ^{2 / 3}\left(\frac{\sqrt{3 \Lambda}}{2} \rho\right)
$$

the Linet-Tian metric for $\sigma=0$ reduces to:

$$
\mathrm{d} s^{2}=p^{2}\left(-\mathrm{d} t^{2}+B^{2} \mathrm{~d} \psi^{2}\right)+\frac{4 C^{2}}{3 \Lambda} \frac{\left(1-p^{3}\right)}{p} \mathrm{~d} \phi^{2}+\frac{3}{\Lambda} \frac{p}{\left(1-p^{3}\right)} \mathrm{d} p^{2}
$$

this is not the (anti-)de Sitter space!
(for Levi-Civita with $\Lambda=0$ and $\sigma=0$ we do obtain flat Minkowski space...)

- the spacetime is of type D
- it belongs to the Plebański-Demiański family
- it belongs to the Kundt family
- it is a generalization of the BIII metric
its properties still need to be investigated

extension to higher dimensions

vacuum solution described above can be extended to any higher D-dimensions:

$$
\mathrm{d} s^{2}=R(\rho)^{\alpha}\left(-S(\rho)^{2 p_{0}} \mathrm{~d} t^{2}+\sum_{i=1}^{D-2} C_{i}^{-2} S(\rho)^{2 p_{i}} \mathrm{~d} \phi_{i}^{2}\right)+\mathrm{d} \rho^{2}
$$

where $\phi_{i} \in[0,2 \pi), \quad R(\rho)=\cos (\beta \rho), \quad S(\rho)=\beta^{-1} \tan (\beta \rho)$,

$$
\alpha=\frac{4}{D-1}, \quad \beta=\sqrt{\frac{(D-1) \Lambda}{2(D-2)}}
$$

C_{i} are corresponding conicity parameters and the constants p_{i} satisfy

$$
\sum_{i=0}^{D-2} p_{i}=1, \quad \sum_{i=0}^{D-2} p_{i}^{2}=1
$$

- for $D=4$ this reduces to the Linet-Tian solution with the parameters

$$
p_{0}=\frac{2 \sigma}{\Sigma}, \quad p_{1}=-\frac{2(1-2 \sigma) \sigma}{\Sigma}, \quad p_{2}=\frac{1-2 \sigma}{\Sigma}
$$

- the $\Lambda<0$ counterpart has been recently given by Sarıoğlu and Tekin (2009)

for more information and references see

J. B. Griffiths and J. Podolský,

The Linet-Tian solution with a positive cosmological constant in four and higher dimensions, Phys. Rev. D 81064015 (2010)

