Black-hole lasers in Bose–Einstein condensates

Antonin Coutant¹, Stefano Finazzi² and Renaud Parentani¹

¹LPT, Paris-Sud Orsay

²SISSA, Trieste

ERE 2010 Granada

PRD 81, 0840242 (2010) AC + RP, arXiv:1005.4024 to appear in NJP SF + RP, PRA 80, 043601 (2009) J.Macher + RP.

< D > < P > <</p>

- I. Black hole instabilities: a brief review.
- II. Phonon mode equation in BEC: exact eq., no hydrodynamical approxim.
- III. Black holes in BEC.
 - Phonon spectra in supersonic flows with
 - one sonic BH or WH horizon,
 - a pair of BH and WH horizons.
 - Impact of the second horizon on observables.
 - Classical vs Quantum description of dyn. instabilities.

< ロ > < 同 > < 回 > < 回 > < □ > <

Black hole instabilities, 1.

• The stability of the Schwarzschild Black Hole

$$ds^{2} = -(1 - \frac{r_{S}}{r}) dt^{2} + \frac{dr^{2}}{(1 - \frac{r_{S}}{r})} + r^{2}(d\theta^{2} + sin^{2}\theta d\phi^{2}),$$

with $r_{\rm S} = 2GM/c^2$, was a subject of **controversy** \rightarrow 50's.

・ 戸 ・ ・ ヨ ・ ・

- stability demonstrated by Wheeler (and others), i.e., The spectrum of metric perturbations contains no complex frequency asympt. bound modes
- its (astro)-physical relevance recognized.

A rotating Black Hole (Kerr) is subject to a weak instability:

• Classical waves display a super-radiance:

$$\phi_{\omega,l,m}^{\rm in} \to \mathcal{R}_{\omega,l,m} \phi_{\omega,l,m}^{\rm out} + \mathcal{T}_{\omega,l,m} \phi_{\omega,l,m}^{\rm absorbed},$$

with

 $|R_{\omega,l,m}|^2 > 1.$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト -

Energy is **extracted** from the hole. This is a **stimulated** process.

 At the Quantum level, super-radiance implies a steady spontaneous pair creation process, i.e. a "vacuum instability". A rotating Black Hole (Kerr) is subject to a weak instability:

• Classical waves display a super-radiance:

$$\phi_{\omega,l,m}^{\rm in} \to \mathcal{R}_{\omega,l,m} \phi_{\omega,l,m}^{\rm out} + \mathcal{T}_{\omega,l,m} \phi_{\omega,l,m}^{\rm absorbed},$$

with

 $|R_{\omega,l,m}|^2 > 1.$

(日)

Energy is **extracted** from the hole. This is a **stimulated** process.

 At the Quantum level, super-radiance implies a steady spontaneous pair creation process, i.e. a "vacuum instability".

- When introducing a reflecting boundary condition, the super-radiant instability induces a dynamical instability a Black Hole Bomb, Press '70, Kang '97, Cardoso et al '04.
- A **non-zero mass** can induce a **reflection**, Damour et al '76; this is presently used to constrain the mass of 'axions'.
- As in a resonant cavity, the spectrum now contains a discrete set of modes with complex frequencies.

Black hole instabilities, 4. The superluminal Black Hole Laser

- discovered by Corley & Jacobson in 1999,
- arises in the presence of two horizons (charged BH) and with superluminal dispersion,
- the 'trapped' region acts as a cavity,
- induces an exponential growth of Hawking radiation, and constitutes a dynamical instability.

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト -

- Naturally arises in Acoustic Black Holes: supersonic flows in Bose Einstein condensates,
 → no hypothesis
 autorimente 2 (Technica, huma 2000)
 - → experiments ? (Technion, June 2009)

Black hole instabilities, 4. The superluminal Black Hole Laser

- discovered by Corley & Jacobson in 1999,
- arises in the presence of two horizons (charged BH) and with superluminal dispersion,
- the 'trapped' region acts as a cavity,
- induces an exponential growth of Hawking radiation, and constitutes a dynamical instability.

< □ > < 同 > < 回 > <

- Naturally arises in Acoustic Black Holes: supersonic flows in Bose Einstein condensates, → no hypothesis
 - \rightarrow experiments ? (Technion, June 2009)

Black hole lasers (in BEC)

- discovered by Corley & Jacobson in 1999,
- "revisited" by Leonhardt & Philbin in 2008,
- twice studied in terms of time-dep. wave-packets,
- instead, in what follows, a spectral analysis of statio. modes.
- see also

Garay et al. PRL 85 and PRA 63 (2000/1), BH/WH flows in BEC Barcelo et al. PRD 74 (2006), Dynam. stab. analysis and Jain et al. PRA 76 (2007). Quantum De Laval nozzle

< □ > < 同 > < 回 > <

Bose Einstein Condensates

• Set of atoms is described by $\hat{\Psi}(t, \mathbf{x})$ obeying

$$[\hat{\Psi}(t,\mathbf{X}),\hat{\Psi}^{\dagger}(t,\mathbf{X}')] = \delta^{3}(\mathbf{X}-\mathbf{X}'),$$

and by a Hamiltonian

$$\hat{H} = \int \mathrm{d}^3 x \left\{ \frac{\hbar^2}{2m} \nabla_{\mathbf{x}} \hat{\Psi}^{\dagger} \nabla_{\mathbf{x}} \hat{\Psi} + \frac{\mathbf{V}(\mathbf{x})}{2} \hat{\Psi}^{\dagger} \hat{\Psi} + \frac{\mathbf{g}(\mathbf{x})}{2} \hat{\Psi}^{\dagger} \hat{\Psi}^{\dagger} \hat{\Psi} \hat{\Psi} \right\}.$$

• at low temperature, $\hat{\Psi}$ is expanded as

$$\hat{\Psi}(t,\mathbf{x}) = \Psi_0(t,\mathbf{x}) + \hat{\psi}(t,\mathbf{x}) \\
= \Psi_0(t,\mathbf{x}) (1 + \hat{\phi}(t,\mathbf{x})),$$
(1)

 $\Psi_0(t, \mathbf{x})$ describes the **condensed atoms**, $\hat{\psi}(\hat{\phi})$ describes **(relative) perturbations**.

A 1D stationary condensate is described by

$$\Psi_0(t,\mathbf{x}) = \mathbf{e}^{-i\mu t/\hbar} imes \sqrt{
ho_0(\mathbf{x})} \, \mathbf{e}^{i heta_0(\mathbf{x})}$$

 ρ_0 is the mean density and $v = \frac{\hbar}{m} \partial_x \theta_0$ the mean velocity.

 ρ_0 , *v* are determined by *V* and *g* through the **Gross Pitaevskii** eq.

$$\mu = \frac{1}{2}mv^2 - \frac{\hbar^2}{2m}\frac{\partial_x^2\sqrt{\rho_0}}{\rho_0} + V(x) + g(x)\rho_0, \qquad (2)$$

which also gives

$$\partial_{\mathbf{x}}(\mathbf{v}\rho_{0})=0. \tag{3}$$

< 同 > < 回 > < 回 > .

BdG equation for relative density fluctuations

In a BEC, density fluctuations obey the BdG equation.
 For relative fluctuations, this eq. is

$$i\hbar(\partial_t + v\partial_x)\,\hat{\phi} = \left[T_v + mc^2\right]\hat{\phi} + mc^2\hat{\phi}^{\dagger}, \qquad (4)$$
$$c^2(x) \equiv \frac{g(x)\rho_0(x)}{m}, \qquad (5)$$

is the x-dep. speed of sound and T_v a kinetic term

$$T_{\rm v} \equiv -\frac{\hbar^2}{2m} \, v \partial_x \frac{1}{v} \partial_x. \tag{6}$$

Only v and c enter in BdG eq.: V, g and ^{∂^z/_x√ρ₀}/_{ρ₀} drop out.
 Exact result, no hydro., no eikonal approximation.

BdG equation for relative density fluctuations

In a BEC, density fluctuations obey the BdG equation.
 For relative fluctuations, this eq. is

$$i\hbar(\partial_t + v\partial_x)\,\hat{\phi} = \left[T_v + mc^2\right]\hat{\phi} + mc^2\hat{\phi}^{\dagger}, \qquad (4)$$
$$c^2(x) \equiv \frac{g(x)\rho_0(x)}{m}, \qquad (5)$$

is the x-dep. speed of sound and T_v a kinetic term

$$T_{\nu} \equiv -\frac{\hbar^2}{2m} \nu \partial_x \frac{1}{\nu} \partial_x.$$
 (6)

• Only *v* and *c* enter in BdG eq.: *V*, *g* and $\frac{\partial_x^2 \sqrt{\rho_0}}{\rho_0}$ drop out. Exact result, no hydro., no eikonal approximation.

Since phonons

- only see the macrosc. **mean** fields c(x), v(x), $\rho_0(x)$,
- are **insensitive** to microsc. qtts g(x), V(x) and Q.pot.

this allows:

- to forget about the (fundamental) theory of the condensate, when computing the phonon spectrum.
- to consider the phonon field from a 4D point of view by covariantizing the BdG eq. introducing 4D tensors
 - the (Unruh) acoustic metric $g_{\mu\nu}(t, x)$
 - the (Jacobson) unit time-like vector field $u^{\mu}(t, x)$

extra scalars ...

Not just an analogy, but an equivalent point of view.

・ロト ・聞 ト ・ヨト ・ヨト

Since phonons

- only see the macrosc. **mean** fields c(x), v(x), $\rho_0(x)$,
- are **insensitive** to microsc. qtts g(x), V(x) and Q.pot.

this allows:

- to forget about the (fundamental) theory of the condensate, when computing the phonon spectrum.
- to consider the phonon field from a 4D point of view by covariantizing the BdG eq. introducing 4D tensors
 - the (Unruh) acoustic metric $g_{\mu\nu}(t, x)$
 - the (Jacobson) unit time-like vector field $u^{\mu}(t, x)$
 - extra scalars ...

Not just an analogy, but an equivalent point of view.

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

Computing phonon spectra. 1.

- basically equivalent to that of a hermitian scalar field.
- to handle the complex character of φ̂, it is useful (Leonhardt et al. '03) to introduce the **doublet**

$$\hat{W} \equiv \begin{pmatrix} \hat{\phi} \\ \hat{\phi}^{\dagger} \end{pmatrix}, \tag{7}$$

invariant under a pseudo-Hermitian conjugation (pH.c.)

$$\hat{W} = \bar{\hat{W}} \equiv \sigma_1 \hat{W}^{\dagger}.$$
(8)

・ コ マ チ (雪 マ チ (雪 マ ー)

• The mode decomposition of \hat{W} is

$$\hat{W} = \sum_{n} (W_n \,\hat{a}_n + \bar{W}_n \,\hat{a}_n^{\dagger}) = \sum_{n} (W_n \,\hat{a}_n + p H.c.), \quad (9)$$

where the modes $W_n(t, x)$ are doublets of \mathbb{C} -functions.

Computing phonon spectra. 1.

- basically equivalent to that of a hermitian scalar field.
- to handle the complex character of φ̂, it is useful (Leonhardt et al. '03) to introduce the doublet

$$\hat{\boldsymbol{W}} \equiv \begin{pmatrix} \hat{\phi} \\ \hat{\phi}^{\dagger} \end{pmatrix}, \tag{7}$$

invariant under a pseudo-Hermitian conjugation (pH.c.)

$$\hat{W} = \bar{\hat{W}} \equiv \sigma_1 \hat{W}^{\dagger}.$$
(8)

$$\hat{W} = \sum_{n} (W_n \,\hat{a}_n + \overline{W}_n \,\hat{a}_n^{\dagger}) = \sum_{n} (W_n \,\hat{a}_n + \rho H.c.), \quad (9)$$

where the modes $W_n(t, x)$ are doublets of \mathbb{C} -functions.

Computing spectra. 2. The inner product

The conserved inner product

$$\langle W_1 | W_2 \rangle \equiv \int \mathrm{d}x \, \rho_0(x) \, W_1^*(t,x) \, \sigma_3 \, W_2(t,x), \qquad (10)$$

is not positive definite (c.f. the Klein-Gordon product).

• As usual, mode orthogonality

$$\langle W_n | W_m \rangle = -\langle \bar{W}_n | \bar{W}_m \rangle = \delta_{nm},$$
 (11)

implies canonical commutators

$$[\hat{a}_n, \hat{a}_m^{\dagger}] = \delta_{nm}, \qquad (12)$$

where

$$\hat{a}_n = \langle W_n | \hat{W} \rangle.$$
 (13)

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Computing spectra. 3. The notion of Asympt. Bound Modes

For stationary backgrounds with infinite spatial extension the solutions of

$$H W_{\lambda}(\mathbf{x}) = \lambda W_{\lambda}(\mathbf{x}), \qquad (14)$$

< ロ > < 同 > < 回 > < 回 > .

which belong to the spectrum must be Asymptotically Bound: bound for $x \to \pm \infty$.

- N.B.1. Hence, in certain non-homogeneous backgrounds, the freq. λ can be complex.
- N.B.2. Quasi Normal Modes are not ABM, hence are not in the spectrum.

Computing spectra. 3. The notion of Asympt. Bound Modes

For stationary backgrounds with infinite spatial extension the solutions of

$$H W_{\lambda}(\mathbf{x}) = \lambda W_{\lambda}(\mathbf{x}), \qquad (14)$$

< ロ > < 同 > < 回 > < 回 > .

which belong to the spectrum must be Asymptotically Bound: bound for $x \to \pm \infty$.

- N.B.1. Hence, in certain non-homogeneous backgrounds, the freq. λ can be complex.
- N.B.2. Quasi Normal Modes are not ABM, hence are not in the spectrum.

Computing spectra. 3. The notion of Asympt. Bound Modes

For stationary backgrounds with infinite spatial extension the solutions of

$$H W_{\lambda}(\mathbf{x}) = \lambda W_{\lambda}(\mathbf{x}), \qquad (14)$$

< ロ > < 同 > < 回 > < 回 > < □ > <

which belong to the spectrum must be Asymptotically Bound: bound for $x \to \pm \infty$.

- N.B.1. Hence, in certain non-homogeneous backgrounds, the freq. λ can be complex.
- N.B.2. Quasi Normal Modes are not ABM, hence are not in the spectrum.

The background stationary profiles

Flows with **one** or **two sonic horizons**, c = |v|: That is, v(x) < 0 and, for **one** horizon:

$$c(x) + v(x) = c_{\mathrm{H}}D \tanh\left(rac{\kappa_{\mathrm{B}}x}{c_{\mathrm{H}}D}
ight),$$

where $\kappa_{\rm B} = \partial_x (c + v)|_{\rm hor.}$, Carter's decay rate ~ surf. gravity, and for two horizons:

$$c(x) + v(x) = c_{\rm H}D \tanh\left(rac{\kappa_{\rm W}(x+L)}{c_{\rm H}D}
ight) \tanh\left(rac{\kappa_{\rm B}(x-L)}{c_{\rm H}D}
ight),$$

Antonin Coutant, Stefano Finazzi and Renaud Parentani Black-hole lasers

The background stationary profiles

Flows with **one** or **two sonic horizons**, c = |v|: That is, v(x) < 0 and, for **one** horizon:

$$c(x) + v(x) = c_{\mathrm{H}} D ext{ tanh} \left(rac{\kappa_{\mathrm{B}} x}{c_{\mathrm{H}} D}
ight),$$

where $\kappa_{\rm B} = \partial_x (c + v)|_{\rm hor.}$, Carter's decay rate ~ surf. gravity, and for two horizons:

$$c(x) + v(x) = c_{\rm H}D \tanh\left(\frac{\kappa_{\rm W}(x+L)}{c_{\rm H}D}\right) \tanh\left(\frac{\kappa_{\rm B}(x-L)}{c_{\rm H}D}\right),$$

Spectrum of W_n for one B/W sonic horizon

The complete set of modes is (Macher-RP 2009)

- a continuous set of real frequency modes which contains
- for $\omega > \omega_{\text{max}}$, **two positive** norm modes, as in flat space, W_{ω}^{u} , W_{ω}^{v} , which resp. describe right/left moving phonons,
- for 0 < ω < ω_{max}, three modes: 2 positive norm W^u_ω, W^v_ω + 1 negative norm mode W^u_{-ω}.
- The threashold freq. ω_{max} scales 1/healing length = mc/\hbar , but also depends on $D = (v_{\text{asympt.}} + c_{\text{asympt.}})/c_H$.
- Lessons:
 - There are no complex freq. ABM,
 - Same spectrum for White Holes and Black Holes, because invariant under $v \rightarrow -v$.
 - Hence White Hole flows are dyn. stable, as BH ones.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Spectrum of W_n for one B/W sonic horizon

The complete set of modes is (Macher-RP 2009)

- a continuous set of real frequency modes which contains
- for $\omega > \omega_{\text{max}}$, **two positive** norm modes, as in flat space, W_{ω}^{u} , W_{ω}^{v} , which resp. describe right/left moving phonons,
- for 0 < ω < ω_{max}, three modes: 2 positive norm W^u_ω, W^v_ω + 1 negative norm mode W^u_{-ω}.
- The threashold freq. ω_{max} scales 1/healing length = mc/\hbar , but also depends on $D = (v_{\text{asympt.}} + c_{\text{asympt.}})/c_H$.

Lessons:

- There are no complex freq. ABM,
- Same spectrum for White Holes and Black Holes, because invariant under $v \rightarrow -v$.
- Hence White Hole flows are dyn. stable, as BH ones.

ヘロト 人間 ト イヨト イヨト

The scattering of *in*-modes

• For $\omega > \omega_{max}$, there is an **elastic** scattering:

$$W_{\omega}^{u,in} = T_{\omega} W_{\omega}^{u,out} + R_{\omega} W_{\omega}^{v,out}, \quad \text{with,}$$
$$|T_{\omega}|^2 + |R_{\omega}|^2 = 1.$$
(15)

• For $0 < \omega < \omega_{max}$, there is a 3×3 matrix, e.g.

$$W_{\omega}^{u, in} = \alpha_{\omega} W_{\omega}^{u, out} + R_{\omega} W_{\omega}^{v, out} + \beta_{\omega} \bar{W}_{-\omega}^{u, out}, \qquad (16)$$

with

$$|\alpha_{\omega}|^{2} + |R_{\omega}|^{2} - |\beta_{\omega}|^{2} = 1.$$
(17)

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

 The β coefficients describe a super-radiance, hence a vacuum instability in QM, i.e. the spontaneous sonic B/W hole radiation.

The scattering of *in*-modes

• For $\omega > \omega_{\text{max}}$, there is an **elastic** scattering:

$$W_{\omega}^{u,in} = T_{\omega}W_{\omega}^{u,out} + R_{\omega}W_{\omega}^{v,out}, \quad \text{with,} |T_{\omega}|^2 + |R_{\omega}|^2 = 1.$$
(15)

• For $0 < \omega < \omega_{max}$, there is a 3×3 matrix, e.g.

$$W_{\omega}^{u,\,in} = \alpha_{\omega} W_{\omega}^{u,\,out} + R_{\omega} W_{\omega}^{v,\,out} + \beta_{\omega} \bar{W}_{-\omega}^{u,\,out}, \qquad (16)$$

with

$$|\alpha_{\omega}|^{2} + |R_{\omega}|^{2} - |\beta_{\omega}|^{2} = 1.$$
(17)

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

 The β coefficients describe a super-radiance, hence a vacuum instability in QM, i.e. the spontaneous sonic B/W hole radiation.

The (numerical) properties of this radiation

For $\omega_{\text{max}} \geq 3\kappa$, the energy spectrum $f_{\omega} = \omega |\beta_{\omega}|^2$ is (JM-RP '09)

- Planckian (up to ω_{max}) and
- with a temperature = $\kappa/2\pi = T_{\text{Hawking}}$, $(f_{\omega} = \omega/(e^{\omega/T_{\omega}} 1))$,

"exactly" as predicted by the gravitational analogy.

N.B. The above spectra are obtained from the BdG eq. only.

Antonin Coutant, Stefano Finazzi and Renaud Parentani Black-hole lasers

Spectrum of W_n for two sonic horizons

The (complete) set of modes contains (AC+RP 2010)

- a continuous spectrum of real freq. modes W^u_ω, W^v_ω with 0 < ω < ∞, with positive norm only, and of dim. 2.
- a discrete set of pairs of complex freq. modes (V_a, Z_a) with cc freq. (λ_a, λ^{*}_a), where a = 1, 2, ...N < ∞.
- **N.B.** Negative norm modes $\overline{W}_{-\omega}$ are no longer in the spectrum; hence there is no Bogoliubov transformation in the present case.

The field operator thus reads

$$\hat{W} = \int_{0}^{\infty} d\omega \sum_{\alpha=u,v} \left[e^{-i\omega t} W^{\alpha}_{\omega}(x) \hat{a}^{\alpha}_{\omega} + pH.c. \right] \\ + \sum_{a} \left[e^{-i\lambda_{a}t} V_{a}(x) \hat{b}_{a} + e^{-i\lambda_{a}^{*}t} Z_{a}(x) \hat{c}_{a} + pH.c. \right].$$
(18)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Spectrum of W_n for two sonic horizons

The (complete) set of modes contains (AC+RP 2010)

- a continuous spectrum of real freq. modes W^u_ω, W^v_ω with 0 < ω < ∞, with positive norm only, and of dim. 2.
- a discrete set of pairs of complex freq. modes (V_a, Z_a) with cc freq. (λ_a, λ^{*}_a), where a = 1, 2, ...N < ∞.

N.B. Negative norm modes $\overline{W}_{-\omega}$ are no longer in the spectrum; hence there is no Bogoliubov transformation in the present case.

The field operator thus reads

$$\hat{W} = \int_{0}^{\infty} d\omega \sum_{\alpha=u,v} \left[e^{-i\omega t} W^{\alpha}_{\omega}(x) \hat{a}^{\alpha}_{\omega} + pH.c. \right] \\ + \sum_{a} \left[e^{-i\lambda_{a}t} V_{a}(x) \hat{b}_{a} + e^{-i\lambda_{a}^{*}t} Z_{a}(x) \hat{c}_{a} + pH.c. \right].$$
(18)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

• The real freq., the modes W^{α}_{ω} and operators $\hat{a}^{\alpha}_{\omega}$ obey

$$\langle \boldsymbol{W}_{\omega}^{\alpha} | \boldsymbol{W}_{\omega'}^{\alpha'} \rangle = \delta(\omega - \omega') \delta_{\alpha\alpha'} = -\langle \bar{\boldsymbol{W}}_{\omega}^{\alpha} | \bar{\boldsymbol{W}}_{\omega'}^{\alpha'} \rangle$$
(19)

and

$$[\hat{a}^{\alpha}_{\omega}, \hat{a}^{\alpha'\dagger}_{\omega'}] = \delta(\omega - \omega')\delta_{\alpha\alpha'}.$$
(20)

• Instead for **complex frequency** λ_a , one has

$$\langle V_a | V_{a'} \rangle = 0 = \langle Z_a | Z_{a'} \rangle, \quad \langle V_a | Z_{a'} \rangle = i \delta_{aa'},$$
 (21)

and

$$[\hat{b}_{a}, \hat{b}_{a'}^{\dagger}] = 0, \quad [\hat{b}_{a}, \hat{c}_{a'}^{\dagger}] = i\delta_{aa'}.$$
 (22)

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

The two-mode sectors with complex freq. λ_a

Each pair (\hat{b}_a, \hat{c}_a) **always** describes **one** complex, rotating, unstable oscillator:

Its (Hermitian) Hamiltonian is

$$\hat{H}_{a} = -i\lambda_{a}\,\hat{c}_{a}^{\dagger}\,\hat{b}_{a} + H.c. \tag{23}$$

Writing

$$\lambda_a = \omega_a + i\Gamma_a, \tag{24}$$

▲ @ ▶ ▲ ■ ▶ ▲

with ω_a , Γ_a real > 0, $\Re \lambda_a = \omega_a$ fixes the angular velocity, $\Im \lambda_a = \Gamma_a$ fixes the **growth rate**.

Computing the spectrum of ABM

The method:

- A. use WKB waves to
 - 1. decompose the exact modes,
 - 2. obtain algebraic relations (valid beyond WKB) between the ℝ freq. W_ω and the ℂ freq. V_a, Z_a
- B. a numerical analysis to validate the predictions.

N.B. The W_{ω} are **deeply connected** to the V_a, Z_a because

$$H W_{\lambda} = \lambda W_{\lambda} \tag{25}$$

< ロ > < 同 > < 回 > < 回 > < □ > <

is **holomorphic** in λ .

Computing the spectrum of ABM

The method:

- A. use WKB waves to
 - 1. decompose the exact modes,
 - 2. obtain algebraic relations (valid beyond WKB) between the ℝ freq. W_ω and the ℂ freq. V_a, Z_a
- B. a numerical analysis to validate the predictions.

N.B. The W_{ω} are **deeply connected** to the V_a, Z_a because

$$H W_{\lambda} = \lambda W_{\lambda} \tag{25}$$

< □ > < 同 > < 回 > <

is holomorphic in λ .

The scattering of real freq. *u*-mode

- On the **left** of the White hor. $W^{u, in}_{\omega} \to W^{u}_{\omega}$, the WKB sol.
- Between the two horizons, for $\omega < \omega_{\max}$,

$$W_{\omega}^{u,in} = \mathcal{A}_{\omega} W_{\omega}^{u} + \mathcal{B}_{\omega}^{(1)} \bar{W}_{-\omega}^{(1)} + \mathcal{B}_{\omega}^{(2)} \bar{W}_{-\omega}^{(2)}, \qquad (26)$$

- On the **right** of the Black horizon, $W^{u,in}_{\omega} \rightarrow e^{i\theta_{\omega}} W^{u}_{\omega}$.
- N.B.1. Negative norm/freq WKB modes W⁽ⁱ⁾_{-w} in (26).
 Hence "anomalous scattering" (~ Bogoliubov transf.).
- N.B.2. Modes fully described by $\mathcal{A}_{\omega}, \mathcal{B}_{\omega}^{(1)}, \mathcal{B}_{\omega}^{(2)}$ and θ_{ω} .

Computing $\mathcal{A}_{\omega}, \mathcal{B}_{\omega}^{(1)}, \mathcal{B}_{\omega}^{(2)}$ and θ_{ω}

- algebraically achieved by introd. a 2-vector $(W_{\omega}^{u}, \overline{W}_{-\omega})$, on which acts a 2 × 2 *S*-matrix (Leonhardt 2008)
- this S-matrix can be decomposed as

$$S = U_4 U_3 U_2 U_1.$$
 (27)

(日)

where

- *U*₁ describes the **scattering** on the **WH** horizon.
- U₂ the propagation from the WH to the BH
- U_3 the scattering on the **BH** horizon.
- U_4 the **escape** to the right of W^u_{ω} and the **return** of $\overline{W}^{(2)}_{-\omega}$ to the WH horizon.

Computing $\mathcal{A}_{\omega}, \mathcal{B}_{\omega}^{(1)}, \mathcal{B}_{\omega}^{(2)}$ and θ_{ω}

- algebraically achieved by introd. a 2-vector $(W_{\omega}^{u}, \overline{W}_{-\omega})$, on which acts a 2 × 2 *S*-matrix (Leonhardt 2008)
- this S-matrix can be decomposed as

$$S = U_4 U_3 U_2 U_1.$$
 (27)

where

- U₁ describes the scattering on the WH horizon.
- U₂ the propagation from the WH to the BH
- U₃ the scattering on the BH horizon.
- U_4 the escape to the right of W^u_{ω} and the return of $\bar{W}^{(2)}_{-\omega}$ to the WH horizon.

The four *U* matrices, (Leonhardt et al.)

Explicitly,

$$U_{1} = S_{WH} = \begin{pmatrix} \alpha_{\omega} & \alpha_{\omega} z_{\omega} \\ \tilde{\alpha}_{\omega} z_{\omega}^{*} & \tilde{\alpha}_{\omega} \end{pmatrix}, \quad U_{2} = \begin{pmatrix} e^{iS_{\omega}^{U}} & 0 \\ 0 & e^{-iS_{-\omega}^{(1)}} \end{pmatrix},$$
$$U_{3} = S_{BH} = \begin{pmatrix} \gamma_{\omega} & \gamma_{\omega} w_{\omega} \\ \tilde{\gamma}_{\omega} w_{\omega}^{*} & \tilde{\gamma}_{\omega} \end{pmatrix}, \quad U_{4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{iS_{-\omega}^{(2)}} \end{pmatrix} (28)$$

where

$$S_{\omega}^{u} \equiv \int_{-L}^{L} \mathrm{d}x \, k_{\omega}^{u}(x), \quad S_{-\omega}^{(i)} \equiv \int_{-L_{\omega}}^{R_{\omega}} \mathrm{d}x \, \left[-k_{\omega}^{(i)}(x)\right], \quad i = 1, 2,$$
(29)

are H-Jacobi actions, and L_{ω} and R_{ω} are the two turning points. By unitarity, one has $|\alpha_{\omega}|^2 = |\tilde{\alpha}_{\omega}|^2$, $|\alpha_{\omega}|^2 = 1/(1 - |z_{\omega}|^2)$.

ヘロト 人間 ト イヨト イヨト

= 900

The single-valued real freq. mode

The mode $W^{u,in}_{\omega}(x)$ must be single-valued. Hence the trapped piece $\mathcal{B}^{(2)}_{\omega}$ of $W^{u,in}_{\omega} = \mathcal{A}_{\omega} W^{u}_{\omega} + \mathcal{B}^{(1)}_{\omega} \bar{W}^{(1)}_{-\omega} + \mathcal{B}^{(2)}_{\omega} \bar{W}^{(2)}_{-\omega}$ must obey

$$\begin{pmatrix} e^{i\theta_{\omega}} \\ \mathcal{B}^{(2)}_{\omega} \end{pmatrix} = S \begin{pmatrix} 1 \\ \mathcal{B}^{(2)}_{\omega} \end{pmatrix},$$
(30)

which implies

$$\mathcal{B}_{\omega}^{(2)} = \frac{S_{21}(\omega)}{1 - S_{22}(\omega)}.$$
(31)

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

The first key equation. (Valid beyond WKB.)

The complex frequency ABModes

When $Im \lambda = \Gamma > 0$, $\rightarrow Im k_{\lambda}^{u} > 0$, hence growth for $x \rightarrow -\infty$. So any single-valued **ABMode** must satisfy

$$\begin{pmatrix} \beta_{a}(\lambda) \\ 1 \end{pmatrix} = S(\lambda) \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$
(32)

This implies

$$S_{22}(\lambda) = 1, \quad \beta_a = S_{12}(\lambda).$$
 (33)

▲圖▶ ▲ 国▶ ▲ 国▶

Second key result: The poles of $\mathcal{B}^{(2)}_{\omega}$ correspond to the complex freq. λ_a .

- Green dots are **numerical values**, the continuous red line is a sum of Lorentzians.
- Near a complex frequency λ_a , solution of $S_{22} = 1$, $|\mathcal{B}_{\omega}^{(2)}|^2 \sim C_a / |\omega - \omega_a - i\Gamma_a|^2$, i.e. a Lorentzian.
- Above ω_{\max} no peaks, because no neg. norm WKB mode.

Computing the complex freq. $\lambda_a = \omega_a + i\Gamma_a$.

- The λ_a 's, are fixed by the cond. **ABM + single-valued**. **Both conditions encoded in** $S_{22} = 1$.
- When the leaking-out amplitudes are small, |z_ω|, |w_ω| = |β_ω/α_ω| ≪ 1, the supersonic region acts as a cavity:
- To zeroth order in z_{ω} , w_{ω} , $S_{22} = 1$ fixes $\Re \lambda_a = \omega_a$ by a **Bohr-Sommerfeld** condition

$$S_{-\omega}^{(1)} - S_{-\omega}^{(2)} + \pi = \int_{-L}^{L} dx [-k_{\omega}^{(1)}(x) + k_{\omega}^{(2)}(x)] + \pi = 2\pi n,$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

where n = 1, 2, ..., N. This explains the **discreteness** of the set. To second order in z_{ω} , w_{ω} , $S_{22} = 1$ fixes $Im \lambda_a = \Gamma_a$ to be $2\Gamma_a T_{\omega_a}^b = |S_{12}(\omega_a)|^2 = |z_{\omega_a} + w_{\omega_a} e^{i\psi_a}|^2$ (34)

• $T_{\omega_a}^b > 0$ is the **bounce time**, given by

$$T_{\omega}^{b} = \frac{\partial}{\partial \omega} \left(S_{-\omega}^{(2)} - S_{-\omega}^{(1)} + \text{"non HJ terms"} \right)$$
(35)

The phase in the cosine is

$$\psi_a = S^u_{\omega_a} + S^{(1)}_{-\omega_a} + \text{ other " non HJ terms"}$$
 (36)

To second order in z_{ω} , w_{ω} , $S_{22} = 1$ fixes $Im \lambda_a = \Gamma_a$ to be

$$2\Gamma_a T^b_{\omega_a} = |S_{12}(\omega_a)|^2 = |z_{\omega_a} + w_{\omega_a} e^{i\psi_a}|^2$$
(34)

• $T_{\omega_a}^b > 0$ is the **bounce time**, given by

$$T_{\omega}^{b} = \frac{\partial}{\partial \omega} \left(S_{-\omega}^{(2)} - S_{-\omega}^{(1)} + \text{"non HJ terms"} \right)$$
(35)

The phase in the cosine is

$$\psi_a = S^u_{\omega_a} + S^{(1)}_{-\omega_a} + \text{ other " non HJ terms"}$$
 (36)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The validity of the 'semi-classical' treatment.

Dots are numerical values.

The 22 red lines are the **predictions**. **Excellent agreement**

Antonin Coutant, Stefano Finazzi and Renaud Parentani Black-hole lasers

The evolution of ω_a and Γ_a in terms of *L*.

- New bound modes appear as *L* grows, with $\omega = \Gamma = 0$?
- The Γ_a reach their maximal value for $\omega_a/\omega_{max} \ll 1$.
- Γ_a reach 0 because of (Young) interferences. The destruction is imperfect when $z_{\omega} \neq w_{\omega}$.
- No bound mode is destroyed as *L* grows.

A typical growing mode with a high Γ_a ($\Gamma/\omega \sim 1/20$)

- Highest amplitudes in the trapped region.
- Exponential decrease on the Right of the BH horizon.
 The spatial damping is proportional to the rate Γ_a = Imλ_a.

- At late times w.r.t. the formation of the BH-WH,
 i.e. times ≫ 1/MaxΓ_a, the mode with the highest Γ_a dominates all observables.
 The classical and quantum descriptions coincide.
- At earlier times, if the *in-state* is (near) vacuum, the quantum settings must be used, and all complex freq. modes contribute to the observables
- At "early" times, i.e. $\Delta t < T^{\text{Bounce}} = 2\pi/(\omega_a \omega_{a+1})$ Hawking radiation as if the WH were not present. the discreteness of the λ_a -set is not yet visible, the resolution in ω being too small.

- At late times w.r.t. the formation of the BH-WH,
 i.e. times ≫ 1/MaxΓ_a, the mode with the highest Γ_a dominates all observables.
 The classical and quantum descriptions coincide.
- At earlier times, if the *in*-state is (near) vacuum, the quantum settings must be used, and all complex freq. modes contribute to the observables
- At "early" times, i.e. $\Delta t < T^{\text{Bounce}} = 2\pi/(\omega_a \omega_{a+1})$ Hawking radiation as if the WH were not present. the discreteness of the λ_a -set is not yet visible, the resolution in ω being too small.

- At late times w.r.t. the formation of the BH-WH,
 i.e. times ≫ 1/MaxΓ_a, the mode with the highest Γ_a dominates all observables.
 The classical and quantum descriptions coincide.
- At earlier times, if the *in*-state is (near) vacuum, the quantum settings must be used, and all complex freq. modes contribute to the observables
- At "early" times, i.e. $\Delta t < T^{\text{Bounce}} = 2\pi/(\omega_a \omega_{a+1})$ Hawking radiation as if the WH were not present. the discreteness of the λ_a -set is not yet visible, the resolution in ω being too small.

- At late times w.r.t. the formation of the BH-WH,
 i.e. times ≫ 1/MaxΓ_a, the mode with the highest Γ_a dominates all observables.
 The classical and quantum descriptions coincide.
- At earlier times, if the *in*-state is (near) vacuum, the quantum settings must be used, and all complex freq. modes contribute to the observables
- At "early" times, i.e. $\Delta t < T^{\text{Bounce}} = 2\pi/(\omega_a \omega_{a+1})$ Hawking radiation as if the WH were not present. the discreteness of the λ_a -set is not yet visible, the resolution in ω being too small.

The quantum flux emitted by a BH-WH system, 1

1. A BH-WH system with 13 complex freq. modes.

Left: The 13 values of T_a^{Bounce} (dots) and Γ_a (squares)

Right: The **continuous** spectrum obtained **without the WH** vs. the corresponding **discrete** quantity for the **BH-WH** pair. **Very different** spectra in ω -space.

The flux emitted by a BH-WH system, 2

Fluxes emitted **after a finite lapse of time** by a single BH (solid line) and the BH-WH pair (dashed).

Left: after $\Delta t = 30/\kappa$, no sign yet of discreteness nor instab. the BH-WH pair emits Hawking-like radiation.

Right: after $\Delta t = 200/\kappa$, **discreteness** and **instab.** visible.

< □ > < 同 >

The flux emitted by a BH-WH system, 2

Fluxes emitted **after a finite lapse of time** by a single BH (solid line) and the BH-WH pair (dashed).

Left: after $\Delta t = 30/\kappa$, no sign yet of discreteness nor instab. the BH-WH pair emits Hawking-like radiation.

Right: after $\Delta t = 200/\kappa$, **discreteness** and **instab**. visible.

The Technion BH-WH, June 2009, preliminary results

About 4 unstable modes.

Experiment too **short** by a factor of 10 to see the laser effect. Probably **more** than 4 complex freq. modes.

Image: A matrix and a matrix

Classical terms: Induced instability

- When sending a classical wave W_{in}(t, x), this induces the instability.
- N.B. It does it through the overlaps with the decaying modes Z_a

$$b_a \equiv \langle Z_a | W_{in} \rangle \tag{37}$$

< □ > < 同 > < 回 > <

.⊒

which fix the amplitude of the **growing** mode V_a :

$$W_{in}(t,x) \rightarrow \sum_{a} \left[e^{-i\lambda_a t} b_a V_a(x) + p.H.c.
ight].$$
 (38)

- In flows with one sonic B/W horizon, the spectrum
 - is continuous, and
 - contains real freq., of both signs for $\omega < \omega_{max}$.
 - emitted flux is ~ Hawking radiation when $\omega_{\text{max}} > 3\kappa$.
- In flows with a pair of BH-WH horizons, one has
 - a continuous spectrum of real and positive freq., and
 - a discrete set of pair of complex freq., with $Re \lambda_a < \omega_{max}$.
 - At late time, the mode with highest Γ_a dominates all obs.

< □ > < 同 > < 回 > < 回 > < 回 >

- At early time, BH-WH flux as that from the sole BH.
- When $L\kappa$ suff. small,
 - no complex freq. modes, hence no dyn. instability,
 - **No** radiation emitted, even though $\kappa \neq 0$,
 - No entanglement entropy.

- In flows with one sonic B/W horizon, the spectrum
 - is continuous, and
 - contains real freq., of both signs for $\omega < \omega_{max}$.
 - emitted flux is ~ Hawking radiation when $\omega_{\text{max}} > 3\kappa$.
- In flows with a pair of BH-WH horizons, one has
 - a continuous spectrum of real and positive freq., and
 - a **discrete** set of pair of **complex** freq., with $Re \lambda_a < \omega_{max}$.
 - At late time, the mode with highest Γ_a dominates all obs.

< ロ > < 同 > < 回 > < 回 > .

- At early time, BH-WH flux as that from the sole BH.
- When $L\kappa$ suff. small,

no complex freq. modes, hence no dyn. instability,

No radiation emitted, even though $\kappa \neq 0$,

No entanglement entropy.

- In flows with one sonic B/W horizon, the spectrum
 - is continuous, and
 - contains real freq., of both signs for $\omega < \omega_{max}$.
 - emitted flux is ~ Hawking radiation when $\omega_{\text{max}} > 3\kappa$.
- In flows with a pair of BH-WH horizons, one has
 - a continuous spectrum of real and positive freq., and
 - a **discrete** set of pair of **complex** freq., with $Re \lambda_a < \omega_{max}$.
 - At late time, the mode with highest Γ_a dominates all obs.

< ロ > < 同 > < 回 > < 回 > < □ > <

- At early time, BH-WH flux as that from the sole BH.
- When $L\kappa$ suff. small,

no complex freq. modes, hence no dyn. instability,

No radiation emitted, even though $\kappa \neq 0$,

No entanglement entropy.

- In flows with one sonic B/W horizon, the spectrum
 - is continuous, and
 - contains real freq., of both signs for $\omega < \omega_{max}$.
 - emitted flux is ~ Hawking radiation when $\omega_{\text{max}} > 3\kappa$.
- In flows with a pair of BH-WH horizons, one has
 - a continuous spectrum of real and positive freq., and
 - a **discrete** set of pair of **complex** freq., with $Re \lambda_a < \omega_{max}$.
 - At late time, the mode with highest Γ_a dominates all obs.

(日)

- At early time, BH-WH flux as that from the sole BH.
- When $L\kappa$ suff. small,
 - no complex freq. modes, hence no dyn. instability,
 - **No** radiation emitted, even though $\kappa \neq 0$,

No entanglement entropy.

Extra remarks on Black hole instabilities.

- In 1974, Hawking showed that a Schwarzschild Black Hole **spontaneously** emits thermal radiation.
- Even though it is **microcanonically stable**, it is **canonically unstable**.
- The partition function possesses an unstable ω² < 0 bound mode (Gross-Perry-Yaffe '82).
- N.B. The same bound mode is responsible for the dynamical instability of 5 dimensional "Black String" (Gregory-Laflamme '93).

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・