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II. Phonon mode equation in BEC: exact eq.,
no hydrodynamical approxim.
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one sonic BH or WH horizon,
a pair of BH and WH horizons.
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Classical vs Quantum description of dyn. instabilities .
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Black hole instabilities, 1.

The stability of the Schwarzschild Black Hole

ds2 = −(1 − rS

r
) dt2 +

dr2

(1 − rS
r )

+ r2(dθ2 + sin2θdφ2),

with rS = 2GM/c2, was a subject of controversy → 50’s.

stability demonstrated by Wheeler (and others), i.e.,
The spectrum of metric perturbations contains
no complex frequency asympt. bound modes

its (astro)-physical relevance recognized.
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Black hole instabilities, 2.

A rotating Black Hole (Kerr) is subject to a weak instability :

Classical waves display a super-radiance :

φin
ω,l ,m → Rω,l ,m φ

out
ω,l ,m + Tω,l ,m φ

absorbed
ω,l ,m ,

with
|Rω,l ,m|2 > 1.

Energy is extracted from the hole.
This is a stimulated process.

At the Quantum level, super-radiance implies
a steady spontaneous pair creation process,
i.e. a "vacuum instability" .
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Black hole instabilities, 3.

When introducing a reflecting boundary condition , the
super-radiant instability induces a dynamical instability
a Black Hole Bomb , Press ’70, Kang ’97, Cardoso et al ’04.

A non-zero mass can induce a reflection , Damour et al ’76;
this is presently used to constrain the mass of ’axions’.

As in a resonant cavity, the spectrum now contains
a discrete set of modes with complex frequencies.
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Black hole instabilities, 4.
The superluminal Black Hole Laser

discovered by Corley & Jacobson in 1999,

arises in the presence of two horizons (charged BH)
and with superluminal dispersion ,

the ’trapped’ region acts as a cavity ,

induces an exponential growth of Hawking radiation ,
and constitutes a dynamical instability .

Naturally arises in Acoustic Black Holes :
supersonic flows in Bose Einstein condensates,
→ no hypothesis
→ experiments ? (Technion, June 2009)
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Black hole lasers (in BEC)

discovered by Corley & Jacobson in 1999,

"revisited" by Leonhardt & Philbin in 2008,

twice studied in terms of time-dep. wave-packets ,

instead, in what follows,
a spectral analysis of statio. modes .

see also
Garay et al. PRL 85 and PRA 63 (2000/1), BH/WH flows in BEC
Barcelo et al. PRD 74 (2006), Dynam. stab. analysis
and Jain et al. PRA 76 (2007). Quantum De Laval nozzle
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Bose Einstein Condensates

Set of atoms is described by Ψ̂(t , x) obeying

[Ψ̂(t , x), Ψ̂†(t , x′)] = δ3(x − x′),

and by a Hamiltonian

Ĥ =

∫

d3x
{

~
2

2m
∇xΨ̂

†∇xΨ̂ + V (x)Ψ̂†Ψ̂ +
g(x)

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

}

.

at low temperature, Ψ̂ is expanded as

Ψ̂(t , x) = Ψ0(t , x) + ψ̂(t , x)

= Ψ0(t , x) (1 + φ̂(t , x)), (1)

Ψ0(t , x) describes the condensed atoms ,
ψ̂ (φ̂) describes (relative) perturbations .
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1D statio condensates

A 1D stationary condensate is described by

Ψ0(t , x) = e−iµt/~ ×
√

ρ0(x) eiθ0(x),

ρ0 is the mean density and v = ~

m∂xθ0 the mean velocity .

ρ0, v are determined by V and g through
the Gross Pitaevskii eq.

µ =
1
2

mv2 − ~
2

2m
∂2

x
√
ρ0

ρ0
+ V (x) + g(x) ρ0, (2)

which also gives
∂x(vρ0) = 0. (3)
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BdG equation for relative density fluctuations

In a BEC, density fluctuations obey the BdG equation .
For relative fluctuations, this eq. is

i~(∂t + v∂x ) φ̂ =
[

Tv + mc2
]

φ̂+ mc2φ̂†, (4)

c2(x) ≡ g(x)ρ0(x)

m
, (5)

is the x-dep. speed of sound and Tv a kinetic term

Tv ≡ − ~2

2m
v∂x

1
v
∂x . (6)

Only v and c enter in BdG eq. : V , g and ∂2
x
√
ρ0

ρ0
drop out.

Exact result , no hydro. , no eikonal approximation.
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Covariantizing the BdG equation ?

Since phonons

only see the macrosc. mean fields c(x), v(x), ρ0(x),

are insensitive to microsc. qtts g(x), V (x) and Q.pot.

this allows:

to forget about the (fundamental) theory of the condensate,
when computing the phonon spectrum .

to consider the phonon field from a 4D point of view
by covariantizing the BdG eq. introducing 4D tensors

the (Unruh) acoustic metric gµν(t, x)
the (Jacobson) unit time-like vector field uµ(t, x)
extra scalars ...

Not just an analogy , but an equivalent point of view .
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Computing phonon spectra. 1.

basically equivalent to that of a hermitian scalar field .
to handle the complex character of φ̂, it is useful (Leonhardt et
al. ’03) to introduce the doublet

Ŵ ≡
(

φ̂

φ̂†

)

, (7)

invariant under a pseudo-Hermitian conjugation (pH.c.)

Ŵ =
¯̂W ≡ σ1Ŵ †. (8)

The mode decomposition of Ŵ is

Ŵ =
∑

n

(Wn ân + W̄n â†
n) =

∑

n

(Wn ân + pH.c.), (9)

where the modes Wn(t , x) are doublets of C-functions.
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n) =

∑

n
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Computing spectra. 2. The inner product

The conserved inner product

〈W1|W2〉 ≡
∫

dx ρ0(x) W ∗
1 (t , x)σ3 W2(t , x), (10)

is not positive definite (c.f. the Klein-Gordon product).

As usual , mode orthogonality

〈Wn|Wm〉 = −〈W̄n|W̄m〉 = δnm, (11)

implies canonical commutators

[ân, â
†
m] = δnm, (12)

where
ân = 〈Wn|Ŵ 〉. (13)
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Computing spectra.
3. The notion of Asympt. Bound Modes

For stationary backgrounds with infinite spatial extension
the solutions of

H Wλ(x) = λWλ(x), (14)

which belong to the spectrum must be
Asymptotically Bound : bound for x → ±∞.

N.B.1. Hence, in certain non-homogeneous backgrounds,
the freq. λ can be complex .

N.B.2. Quasi Normal Modes are not ABM ,
hence are not in the spectrum.
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The background stationary profiles

Flows with one or two sonic horizons , c = |v |:
That is, v(x) < 0 and, for one horizon:

c(x) + v(x) = cHD tanh
(

κBx
cHD

)

,

where κB = ∂x (c + v)|hor., Carter’s decay rate ∼ surf. gravity,
and for two horizons:

c(x) + v(x) = cHD tanh
(

κW(x + L)

cHD

)

tanh
(

κB(x − L)

cHD

)

,
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Spectrum of Wn for one B/W sonic horizon

The complete set of modes is (Macher-RP 2009)

a continuous set of real frequency modes which contains

for ω > ωmax, two positive norm modes, as in flat space,
W u
ω , W v

ω , which resp. describe right/left moving phonons,

for 0 < ω < ωmax, three modes: 2 positive norm W u
ω , W v

ω

+ 1 negative norm mode W̄ u
−ω.

The threashold freq. ωmax scales 1/healing length = mc/~,
but also depends on D = (vasympt. + casympt.)/cH .

Lessons:
There are no complex freq. ABM ,
Same spectrum for White Holes and Black Holes ,
because invariant under v → −v .
Hence White Hole flows are dyn. stable , as BH ones.
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The scattering of in-modes

For ω > ωmax, there is an elastic scattering:

W u, in
ω = TωW u, out

ω + RωW v , out
ω , with,

|Tω|2 + |Rω|2 = 1. (15)

For 0 < ω < ωmax, there is a 3×3 matrix, e.g.

W u, in
ω = αωW u, out

ω + RωW v , out
ω + βωW̄ u, out

−ω , (16)

with
|αω|2+|Rω|2 − |βω|2 = 1. (17)

The β coefficients describe a super-radiance ,
hence a vacuum instability in QM,
i.e. the spontaneous sonic B/W hole radiation.
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The (numerical) properties of this radiation

For ωmax ≥ 3κ, the energy spectrum fω = ω |βω|2 is (JM-RP ’09)

Planckian (up to ωmax) and

with a temperature = κ/2π = THawking, (fω = ω/(eω/Tω − 1),

"exactly" as predicted by the gravitational analogy .

0.01 0.1 1
ω / κ

-6

-5

-4

-3

-2

-1

0

lo
g 10

 f
ω

D=0.1
D=0.4
D=0.7

0.01 0.1 1
ω / κ

0.8

0.9

1

1.1

T
ω
 / 

T
H

N.B. The above spectra are obtained from the BdG eq. only .
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Spectrum of Wn for two sonic horizons

The (complete) set of modes contains (AC+RP 2010)

a continuous spectrum of real freq. modes W u
ω ,W

v
ω with

0 < ω <∞, with positive norm only , and of dim. 2.

a discrete set of pairs of complex freq. modes (Va, Za)
with cc freq. (λa, λ

∗
a), where a = 1,2, ...N <∞.

N.B. Negative norm modes W̄−ω are no longer in the spectrum;
hence there is no Bogoliubov transformation in the present case.

The field operator thus reads

Ŵ =

∫ ∞

0
dω

∑

α=u,v

[

e−iωtWα
ω (x) âαω + pH.c.

]

+
∑

a

[

e−iλatVa(x) b̂a + e−iλ∗a tZa(x) ĉa + pH.c.
]

. (18)
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Norms and commutators

The real freq., the modes Wα
ω and operators âαω obey

〈Wα
ω |Wα′

ω′ 〉 = δ(ω − ω′)δαα′ = −〈W̄α
ω |W̄α′

ω′ 〉 (19)

and
[âαω, â

α′†
ω′ ] = δ(ω − ω′)δαα′ . (20)

Instead for complex frequency λa, one has

〈Va|Va′〉 = 0 = 〈Za|Za′〉, 〈Va|Za′〉 = iδaa′ , (21)

and
[b̂a, b̂

†
a′ ] = 0, [b̂a, ĉ

†
a′ ] = iδaa′ . (22)
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The two-mode sectors with complex freq. λa

Each pair (b̂a, ĉa) always describes
one complex, rotating, unstable oscillator:

Its (Hermitian) Hamiltonian is

Ĥa = −iλa ĉ†
a b̂a + H.c. (23)

Writing
λa = ωa + iΓa, (24)

with ωa,Γa real > 0,
ℜλa = ωa fixes the angular velocity,
ℑλa = Γa fixes the growth rate .
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Computing the spectrum of ABM

The method:

A. use WKB waves to

1. decompose the exact modes,
2. obtain algebraic relations (valid beyond WKB )
between the R freq. Wω and the C freq. Va,Za

B. a numerical analysis to validate the predictions.

N.B. The Wω are deeply connected to the Va,Za because

H Wλ = λWλ (25)

is holomorphic in λ.
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The scattering of real freq. u-mode

-12,5 -10 -7,5 -5 -2,5 0 2,5 5 7,5 10 12,5
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-0,8

-0,4

0,4
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On the left of the White hor. W u, in
ω → W u

ω , the WKB sol.

Between the two horizons, for ω < ωmax,

W u, in
ω = Aω W u

ω + B(1)
ω W̄ (1)

−ω + B(2)
ω W̄ (2)

−ω , (26)

On the right of the Black horizon, W u, in
ω → eiθω W u

ω .

N.B.1. Negative norm/freq WKB modes W̄ (i)
−ω in (26).

Hence "anomalous scattering" (∼ Bogoliubov transf.).

N.B.2. Modes fully described by Aω,B(1)
ω ,B(2)

ω and θω.
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Computing Aω,B(1)
ω ,B(2)

ω and θω

algebraically achieved by introd. a 2-vector (W u
ω , W̄−ω), on

which acts a 2 × 2 S-matrix (Leonhardt 2008)

this S-matrix can be decomposed as

S = U4 U3 U2 U1. (27)

where
U1 describes the scattering on the WH horizon.
U2 the propagation from the WH to the BH
U3 the scattering on the BH horizon.
U4 the escape to the right of W u

ω

and the return of W̄ (2)
−ω to the WH horizon.
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The four U matrices, (Leonhardt et al.)

Explicitly,

U1 = SWH =

(

αω αωzω
α̃ωz∗

ω α̃ω

)

, U2 =

(

eiSu
ω 0

0 e−iS(1)
−ω

)

,

U3 = SBH =

(

γω γωwω

γ̃ωw∗
ω γ̃ω

)

, U4 =

(

1 0

0 eiS(2)
−ω

)

,(28)

where

Su
ω ≡

∫ L

−L
dx ku

ω(x), S(i)
−ω ≡

∫ Rω

−Lω

dx
[

−k (i)
ω (x)

]

, i = 1,2,

(29)
are H-Jacobi actions, and Lω and Rω are the two turning points.
By unitarity, one has |αω|2 = |α̃ω|2, |αω|2 = 1/(1 − |zω|2).
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The single-valued real freq. mode

The mode W u, in
ω (x) must be single-valued .

Hence the trapped piece B(2)
ω of

W u, in
ω = Aω W u

ω + B(1)
ω W̄ (1)

−ω + B(2)
ω W̄ (2)

−ω must obey
(

eiθω

B(2)
ω

)

= S

(

1

B(2)
ω

)

, (30)

which implies

B(2)
ω =

S21(ω)

1 − S22(ω)
. (31)

The first key equation . (Valid beyond WKB.)
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The complex frequency ABModes

When Im λ = Γ > 0, → Im ku
λ > 0, hence growth for x → −∞.

So any single-valued ABMode must satisfy
(

βa(λ)
1

)

= S(λ)

(

0
1

)

. (32)

This implies
S22(λ) = 1, βa = S12(λ). (33)

Second key result:
The poles of B(2)

ω correspond to the complex freq. λa.
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|B(2)
ω |2, as a function of ω real .

Green dots are numerical values ,
the continuous red line is a sum of Lorentzians.

Near a complex frequency λa, solution of S22 = 1,
|B(2)
ω |2 ∼ Ca/ |ω − ωa − iΓa|2, i.e. a Lorentzian.

Above ωmax no peaks, because no neg. norm WKB mode.
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Computing the complex freq. λa = ωa + iΓa.

The λa’s, are fixed by the cond. ABM + single-valued .
Both conditions encoded in S22 = 1.

When the leaking-out amplitudes are small,
|zω|, |wω| = |βω/αω| ≪ 1,
the supersonic region acts as a cavity :

To zeroth order in zω,wω, S22 = 1 fixes
ℜλa = ωa by a Bohr-Sommerfeld condition

S(1)
−ω − S(2)

−ω + π =

∫ L

−L
dx [−k (1)

ω (x) + k (2)
ω (x)] + π = 2πn,

where n = 1,2, ...,N.
This explains the discreteness of the set.
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To second order in zω,wω, S22 = 1 fixes Im λa = Γa to be

2ΓaT b
ωa

= |S12(ωa)|2 = |zωa + wωa eiψa|2 (34)

T b
ωa
> 0 is the bounce time , given by

T b
ω =

∂

∂ω

(

S(2)
−ω − S(1)

−ω + ”non HJ terms”
)

(35)

The phase in the cosine is

ψa = Su
ωa

+ S(1)
−ωa

+ other ”non HJ terms” (36)
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The validity of the ’semi-classical’ treatment.
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ω/ωmax

|B
(2

)
ω

|2

Dots are numerical values .
The 22 red lines are the predictions .
Excellent agreement
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The evolution of ωa and Γa in terms of L.
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New bound modes appear as L grows, with ω = Γ = 0 ?

The Γa reach their maximal value for ωa/ωmax ≪ 1.

Γa reach 0 because of (Young) interferences.
The destruction is imperfect when zω 6= wω.

No bound mode is destroyed as L grows.
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A typical growing mode with a high Γa (Γ/ω ∼ 1/20)
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Highest amplitudes in the trapped region.

Exponential decrease on the Right of the BH horizon.
The spatial damping is proportional to the rate Γa = Imλa.
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Physical predictions

At late times w.r.t. the formation of the BH-WH,
i.e. times ≫ 1/MaxΓa, the mode with the highest Γa

dominates all observables .
The classical and quantum descriptions coincide .

At earlier times , if the in-state is (near) vacuum,
the quantum settings must be used , and
all complex freq. modes contribute to the observables

At "early" times , i.e. ∆t < T Bounce = 2π/(ωa − ωa+1)
Hawking radiation as if the WH were not present.
the discreteness of the λa-set is not yet visible,
the resolution in ω being too small.
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The quantum flux emitted by a BH-WH system, 1

1. A BH-WH system with 13 complex freq. modes.
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Left: The 13 values of T Bounce
a (dots) and Γa (squares)

Right: The continuous spectrum obtained without the WH
vs. the corresponding discrete quantity for the BH-WH pair.

Very different spectra in ω-space .
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The flux emitted by a BH-WH system, 2

Fluxes emitted after a finite lapse of time
by a single BH (solid line) and the BH-WH pair (dashed).
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Left : after ∆t = 30/κ, no sign yet of discreteness nor instab.
the BH-WH pair emits Hawking-like radiation .

Right : after ∆t = 200/κ, discreteness and instab. visible.
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The Technion BH-WH, June 2009,
preliminary results
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About 4 unstable modes.
Experiment too short by a factor of 10 to see the laser effect.
Probably more than 4 complex freq. modes.
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Classical terms: Induced instability

When sending a classical wave Win(t , x),
this induces the instability.

N.B. It does it through the overlaps with
the decaying modes Za

ba ≡ 〈Za|Win〉 (37)

which fix the amplitude of the growing mode Va :

Win(t , x) →
∑

a

[

e−iλatba Va(x) + p.H.c.
]

. (38)
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Conclusions

In flows with one sonic B/W horizon, the spectrum
is continuous , and
contains real freq., of both signs for ω < ωmax.
emitted flux is ∼ Hawking radiation when ωmax > 3κ.

In flows with a pair of BH-WH horizons, one has
a continuous spectrum of real and positive freq., and
a discrete set of pair of complex freq., with Re λa < ωmax.
At late time , the mode with highest Γa dominates all obs.
At early time , BH-WH flux as that from the sole BH.

When Lκ suff. small ,
no complex freq. modes, hence no dyn. instability,
No radiation emitted, even though κ 6= 0,
No entanglement entropy.
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Extra remarks on Black hole instabilities.

In 1974, Hawking showed that a Schwarzschild Black Hole
spontaneously emits thermal radiation.

Even though it is microcanonically stable ,
it is canonically unstable .

The partition function possesses an unstable ω2 < 0
bound mode (Gross-Perry-Yaffe ’82).

N.B. The same bound mode is responsible for the
dynamical instability of 5 dimensional "Black String"
(Gregory-Laflamme ’93).
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