
.

.

. ..

.

.

New examples of marginally trapped surfaces

and tubes in warped spacetimes

Miguel Ortega
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Preliminaries

We consider:

(M4,g) a 4-dim. spacetime.

S a compact, without boundary, embedded spacelike surface in

(M4,g).
−→
k ,

−→
l : two normal, future-pointing lightlike vector fields s.t.

g(
−→
l ,

−→
k ) = −1.

A−→
k

and A−→
l
: associated shape operators.

.
S is called Marginally Outer Trapped Surface (MOTS)
..

.

. ..

.

.

when trace(A−→
l
) = 0 and trace(A−→

k
) ̸= 0 everywhere, or viceversa.

Note: MOTS =⇒ ∥H⃗∥ = 0, but the converse does not hold.
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.
A Marginally Outer Trapped Tube (MOTT)
..

.

. ..

.

.

is a 3-dimensional smooth manifold G which admits a foliation by surfaces

{Sλ : λ ∈ Λ} s.t. there is a smooth immersion Φ : G →M4 satisfying:

...1 each Φ(Sλ) (λ ∈ Λ) is a MOTS in M4,

...2 Φ(Sλ) ∩Φ(Sµ) = ∅ for any λ ̸= µ.

The causal character of the MOTT may vary from point to point.
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Targets of the talk

.

.

. ..

.

.

To obtain new examples MOTS and MOTT in a closed

Friedman-Lemâıtre-Robertson-Walker 4-spacetime.

Firstly, by using CMC surfaces in S3.

Secondly, by using the classical Hopf map.
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CMC surfaces in S3

Let us consider:

• a smooth function f : I ⊂ R → (0,∞), t ∈ I,

• a 3-dim. Riemannian manifold (M3,g3),

• the Generalized-Robertson-Walker 4-spacetime M
4
1 = I×M3 with line

element g4 = −dt2 + f2g3, (f =scale factor!)

• a surface S and an immersion,

and for a fixed to ∈ I,

S
φ−→ M3

ψ−→ M
4
1

p 7→ (t0,p)
⇒ ϕ := ψ ◦φ

being ϕ an immersion of S in M
4
1 in the t = to slice.

Miguel Ortega – Univ. Granada 3. Using CMC surfaces in S3 Pag. 5/22



. . . . . .

Preliminaries Targets of the talk Using CMC surfaces in S3 Using the Hopf map

CMC surfaces in S3

Let us consider:

• a smooth function f : I ⊂ R → (0,∞), t ∈ I,

• a 3-dim. Riemannian manifold (M3,g3),

• the Generalized-Robertson-Walker 4-spacetime M
4
1 = I×M3 with line

element g4 = −dt2 + f2g3, (f =scale factor!)

• a surface S and an immersion, and for a fixed to ∈ I,

S
φ−→ M3 ψ−→ M

4
1

p 7→ (t0,p)
⇒ ϕ := ψ ◦φ

being ϕ an immersion of S in M
4
1 in the t = to slice.

Miguel Ortega – Univ. Granada 3. Using CMC surfaces in S3 Pag. 5/22



. . . . . .

Preliminaries Targets of the talk Using CMC surfaces in S3 Using the Hopf map

Recall

S
φ−→M3 ψ−→M

4
1, ϕ := ψ ◦φ.

If H⃗ϕ and H⃗φ stand for the mean curvature vectors associated with ϕ and

φ, respectively, one obtains

H⃗ϕ(p) =
H⃗φ(p)

f2(to)
+
f ′(to)

f(to)
∂t|(to,p) . (1)

.
Theorem 1
..

.

. ..

.

.

A surface ϕ : S→ (M
4
1,−dt

2 + f2g3) contained in a t0-slice satisfies

∥H⃗ϕ∥ = 0 ⇐⇒ φ : S→M3 has constant mean curvature with

∥H⃗φ∥ = |f ′(t0)|.
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.
Corollary 1
..

.

. ..

.

.

There exist MOTS with arbitrary genus in closed (M3 = S3) FLRW
spacetimes.

H.B. Lawson , Complete Minimal Surfaces in S3, Annals of Math. 92

(1970) 335-374.

A. Butscher, F. Pacard, Doubling Constant Mean Curvature Tori in

S3, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (5) Vol. V (2006), 611-638.

Proof: By the fact that there exist embedded, compact surfaces with

(small) constant mean curvature and arbitrary genus in S3, we can obtain

MOTS with arbitrary genus in closed FLRW (I× S3,−dt2 + f2g3) (in
t = to slices).
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.
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.

. ..

.

.
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Examples of MOTT in closed FLRW foliated by tori with

different causality

Let C be the complex numbers, with i =
√
−1, |z| the modulus of z ∈ C, z

its complex conjugate.

S3 = {(z,w) ∈ C2 : |z|2 + |w|2 = 1}, with standard metric g3.

Recall the CMC embedded torus Cu in S3 given by

Cu :=
{
(z1, z2) ∈ S3 ⊂ C2 : |z1| = cos(u), |z2| = sin(u)

}
,

u ∈ (0,π/2), with mean curvature ∥H⃗u∥ := |2 cot(2u)|.
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Define

h : I→ (0,π/2), h(t) =
1

2
arccot

(
f ′(t)

2

)
=
π

4
−

1

2
arctan

(
f ′(t)

2

)
.

And now, the embedding

χ : I× S1 × S1 → −I×f S3,
χ(t, eiθ, eiν) =

(
t, eiθ cos(h(t)), eiν sin(h(t))

)
.

For each t ∈ I, the surface ϕ = χ(t,−,−) : S1 × S1 →M
4
1, is a torus,

embedded in the t-slice, with constant mean curvature

∥H⃗ϕ∥ =
∣∣2 cot(2u) |u=h(t)∣∣ = |f ′(t)|.

By our theorem, each torus is a MOTS, and therefore, χ is a

MOTT.
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The induced metric is:

χ∗ḡ4 ≡

 ḡ4(χt,χt) 0 0

0 (f(t) cos(h(t)))2 0

0 0 (f(t) sin(h(t)))2

 ,

The causal character depends only on χt:

z(t) := ḡ4(χt,χt) = −1+

(
f(t)f ′′(t)

4+ f ′(t)2

)2

.
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z(t) := ḡ4(χt,χt) = −1+

(
f(t)f ′′(t)

4+ f ′(t)2

)2

.

...1 Given a,b > 0 such that a2 = 4+ b2, define the function

f : I = R → (0,∞), f(t) = a cosh(t) + b sinh(t). Then, z(t) ≡ 0.

Therefore, χt is everywhere lightlike.

...2 Define the function f : (−1, 1) → (0,∞), f(t) =
2

1− t2
. By simple

computations, we obtain z(t) > 3, for any t ∈ (−1, 1), and therefore

χt is always spacelike.
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...3 Take real constants c1, c2 > 0. Then, the function f : R → (0,∞),

f(t) =
4+c21
4c2

t2 + c1t+ c2 is well-defined. A simple computation shows

z(t) ≡ −3/4. This implies that χt is everywhere timelike.

...4 Given the function f : R → (0,∞), f(t) = 3+ cos(2t). A

straightforward computation gives

z(t) := −1+

(
f(t)f ′′(t)

4+ f ′(t)2

)2

= −1+
4 cos2(2t)(3+ cos(2t))2

(3− cos(4t))2
.

Finally, it is easy to check z(0) = 15 and z(π/4) = −1. In this case,

the causal character changes with time.
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The classical Hopf map

S2(1/2) = {(z, x) ∈ C× R : |z|2 + x2 = 1/4}, with standard metric g2 (of

radius 1/2.

The classical Hopf map is

π : S3 → S2(1/2), π(z,w) =
(
zw,

1

2
|z|2 −

1

2
|w|2

)
.

...1 π is a Riemannian submersion.

...2 For each (z,a) ∈ S2(1/2), then π−1{(z,a)} = closed geodesic in S3.
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Extending π to a new submersion

(S3,g3)

(−I×f S3,−dt2 + f2g3) (t,p)

yπ

yπ=Id×π y

(S2(1/2),g2)

(−I×f S2(1/2),−dt2 + f2g2) (t,π(p))

Next, we consider a curve α in −I×f S2(1/2),

and its pullback:

π∗α = J× S1 −−−−→

− I×f S3

y

yπ
J ⊂ R α−−−−→ −I×f S2(1/2)

The geometric elements of α determine the properties of the mean

curvature vector of π∗α.
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π∗α = J× S1 −−−−→ −I×f S3y yπ
J ⊂ R α−−−−→ −I×f S2(1/2)

For instance, if α is embedded and open / closed, then π∗(α) is an

embedded cylinder / torus in −I×f S3.

These surfaces may not be contained in a single t-slice.

Miguel Ortega – Univ. Granada 4. Using the Hopf map Pag. 15/22



. . . . . .

Preliminaries Targets of the talk Using CMC surfaces in S3 Using the Hopf map

Consider a unit spacelike Frenet curve.

Let β be a horizontal lift of α.

J
β−−−−→

(
−I×f S3,−dt2 + f2g3

)

∥∥∥

yπ
J

α−−−−→
(
−I×f S2(1/2),−dt2 + f2g2

)

Also, for each eiθ ∈ S1, the map

Γθ : −I×f S3 → −I×f S3, Γθ(t, (z,w)) =
(
t, (eiθz, eiθw)

)
is an isometry. Now, define:

ϕ : π∗(α) = J× S1 → −I×f S3, ϕ(s, θ) = Γθ(β(s)).

ϕ is just a parametrization of the surface π∗(α).
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If g3 = −dt2 + f2g2 is the line element, let α : J ⊂ R → −I×f S2(1/2) be
a unit spacelike Frenet curve with Frenet apparatus {T = α̇,N,B} and κ,

τ, i.e.

∇TT = ϵ2κN, ∇TN = κT + ϵ3τB, ∇TB = −ϵ2τN,

where ϵ2 = g3(N,N), ϵ3 = g3(B,B), ϵ2 = −ϵ3 = ±1, and {T ,N,B} is a

positive basis along α.
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π∗(α) = J× S1
ϕ - (−I×f S3,g4 = −dt2 + f2g3)

J
? α-

β
-

(−I×f S2(1/2),g3 = −dt2 + f2g2)

π
?

Let Ñ and B̃ be horizontal lifts of N and B, resp., along β.
.
Lemma 1
..

.

. ..

.

.

The mean curvature vector of ϕ is given by

H⃗ϕ =
ϵ2

2

(
κ+

f ′

f
g3(∂t,N)

)
(Γθ)∗Ñ+

ϵ3

2

(
f ′

f
g3(∂t,B)

)
(Γθ)∗B̃
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.
Proposition 1
..

.

. ..

.

.

The mean curvature vector H⃗ϕ satisfies ∥H⃗ϕ∥ = 0 iff(
κ+

f ′

f
g3(∂t,N)

)2

−

(
f ′

f
g3(∂t,B)

)2

= 0.
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Final remarks

.

.

. ..

.

.

We obtained an open embedded surface with null mean curvature vector,

and crossing two regions (expanding and conllapsing).

.
Open problem
..

.

. ..

.

.

To obtain an explicit MOTS in the 4-dim closed FLRW spacetime, which

is not contained in any t-slice, from a closed curve in the toy model

−I×f S2(1/2).
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Conclusions

There exist MOTS in closed FLRW 4-spacetimes embedded in

to-slices with arbitrary topology.

This leads to MOTT in closed FLRW 4-spacetimes.

From a curve in a (toy model) closed FLRW 3-spacetime

α : J→ (−I×f S2(1/2),−dt2 + f2g2), it is possible to construct

embedded cylinders and tori in the closed FLRW 4-spacetime

(−I×f S3,−dt2 + f2g3) with some control of the mean curvature

vector.

Problem: to construct such a tori which is also a MOTS.

J. L. Flores, S. Haesen, M. Ortega, Class. Quantum Grav. 27 (2010)
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Thank you very much

for your attention!!
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