New examples of marginally trapped surfaces and tubes in warped spacetimes

Miguel Ortega

(joint work with José Luis Flores and Stefan Haesen)

Universidad de Granada

Spanish Relativity Meeting - ERE2010 Granada, September 2010

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ─ 吾

Preliminaries

We consider:

- (M^4, g) a 4-dim. spacetime.
- S a compact, without boundary, embedded spacelike surface in (M^4, g) .
- \vec{k} , \vec{l} : two normal, future-pointing lightlike vector fields s.t. $g(\vec{l}, \vec{k}) = -1$.
- $A_{\overrightarrow{k}}$ and $A_{\overrightarrow{l}}$: associated shape operators.

S is called Marginally Outer Trapped Surface (MOTS) when trace $(A_{\overrightarrow{l}}) = 0$ and trace $(A_{\overrightarrow{k}}) \neq 0$ everywhere, or viceversa.

Note: MOTS $\implies \|\vec{H}\| = 0$, but the converse does not hold.

A Marginally Outer Trapped Tube (MOTT)

is a 3-dimensional smooth manifold \mathcal{G} which admits a foliation by surfaces $\{S_{\lambda} : \lambda \in \Lambda\}$ s.t. there is a smooth immersion $\Phi : \mathcal{G} \to M^4$ satisfying:

- each $\Phi(S_{\lambda})$ ($\lambda \in \Lambda$) is a MOTS in M^4 ,
- $\ \ \, \bullet (S_{\lambda}) \cap \Phi(S_{\mu}) = \emptyset \text{ for any } \lambda \neq \mu.$

The causal character of the MOTT may vary from point to point.

To obtain new examples MOTS and MOTT in a closed Friedman-Lemaître-Robertson-Walker 4-spacetime.

To obtain new examples MOTS and MOTT in a closed Friedman-Lemaître-Robertson-Walker 4-spacetime.

Firstly, by using CMC surfaces in \mathbb{S}^3 .

To obtain new examples MOTS and MOTT in a closed Friedman-Lemaître-Robertson-Walker 4-spacetime.

Firstly, by using CMC surfaces in \mathbb{S}^3 .

Secondly, by using the classical Hopf map.

CMC surfaces in \mathbb{S}^3

Let us consider:

- a smooth function $f: I \subset \mathbb{R} \to (0, \infty)$, $t \in I$,
- a 3-dim. Riemannian manifold (M^3, g_3) ,
- the Generalized-Robertson-Walker 4-spacetime $\overline{M}_1^4 = I \times M^3$ with line element $\overline{g}_4 = -dt^2 + f^2g_3$, (f =scale factor!)
- a surface S and an immersion,

 $S \xrightarrow{\phi} M^3$

CMC surfaces in \mathbb{S}^3

Let us consider:

- a smooth function $f: I \subset \mathbb{R} \to (0, \infty)$, $t \in I$,
- a 3-dim. Riemannian manifold (M^3, g_3) ,
- the Generalized-Robertson-Walker 4-spacetime $\overline{M}_1^4 = I \times M^3$ with line element $\overline{g}_4 = -dt^2 + f^2g_3$, (f =scale factor!)
- \bullet a surface S and an immersion, and for a fixed $t_o \in I,$

being ϕ an immersion of S in \overline{M}_1^4 in the $t = t_o$ slice.

Recall

$S \xrightarrow{\phi} M^3 \xrightarrow{\psi} \overline{M}_1^4, \quad \varphi := \psi \circ \varphi.$

If \vec{H}_{φ} and \vec{H}_{ϕ} stand for the mean curvature vectors associated with φ and ϕ , respectively, one obtains

$$\vec{H}_{\Phi}(p) = \frac{\vec{H}_{\phi}(p)}{f^{2}(t_{o})} + \frac{f'(t_{o})}{f(t_{o})} \left. \partial_{t} \right|_{(t_{o},p)}.$$
(1)

Recall

$S \xrightarrow{\phi} M^3 \xrightarrow{\psi} \overline{M}_1^4, \quad \varphi := \psi \circ \varphi.$

If \vec{H}_{φ} and \vec{H}_{ϕ} stand for the mean curvature vectors associated with φ and ϕ , respectively, one obtains

$$\vec{H}_{\Phi}(p) = \frac{\vec{H}_{\phi}(p)}{f^{2}(t_{o})} + \frac{f'(t_{o})}{f(t_{o})} \left. \partial_{t} \right|_{(t_{o},p)}.$$
(1)

Theorem

A surface $\phi: S \to (\overline{M}_1^4, -dt^2 + f^2g_3)$ contained in a t_0 -slice satisfies $\|\vec{H}_{\phi}\| = 0 \iff \phi: S \to M^3$ has constant mean curvature with $\|\vec{H}_{\phi}\| = |f'(t_0)|.$

Corollary

There exist MOTS with arbitrary genus in closed ($M^3 = S^3$) FLRW spacetimes.

Corollary

There exist MOTS with arbitrary genus in closed ($M^3 = S^3$) FLRW spacetimes.

- I.B. Lawson , Complete Minimal Surfaces in S³, Annals of Math. 92 (1970) 335-374.
- A. Butscher, F. Pacard, *Doubling Constant Mean Curvature Tori in* S^3 , Ann. Scuola Norm. Sup. Pisa Cl. Sci., (5) Vol. V (2006), 611-638. *Proof:* By the fact that there exist embedded, compact surfaces with (small) constant mean curvature and arbitrary genus in S^3 , we can obtain MOTS with arbitrary genus in closed FLRW (I × S^3 , $-dt^2 + f^2g_3$) (in $t = t_o$ slices).

Examples of MOTT in closed FLRW foliated by tori with different causality

Let \mathbb{C} be the complex numbers, with $i = \sqrt{-1}$, |z| the modulus of $z \in \mathbb{C}$, \overline{z} its complex conjugate.

 $\mathbb{S}^3 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 1\}$, with standard metric g_3 .

Recall the CMC embedded torus C_u in \mathbb{S}^3 given by

 $C_{\mathfrak{u}} := \{(z_1, z_2) \in \mathbb{S}^3 \subset \mathbb{C}^2 : |z_1| = \cos(\mathfrak{u}), |z_2| = \sin(\mathfrak{u})\},\$

 $\mathfrak{u} \in (0, \pi/2)$, with mean curvature $\|\vec{H}_{\mathfrak{u}}\| := |2\cot(2\mathfrak{u})|$.

Define

$$h: I \to (0,\pi/2), \ h(t) = \frac{1}{2} \text{arccot}\left(\frac{f'(t)}{2}\right) = \frac{\pi}{4} - \frac{1}{2} \arctan\left(\frac{f'(t)}{2}\right).$$

And now, the embedding

$$\begin{split} \chi: \mathrm{I} \times \mathbb{S}^1 \times \mathbb{S}^1 \to -\mathrm{I} \times_{\mathrm{f}} \mathbb{S}^3, \\ \chi(\mathrm{t}, e^{\mathrm{i}\theta}, e^{\mathrm{i}\nu}) &= \left(\mathrm{t}, e^{\mathrm{i}\theta} \cos(\mathrm{h}(\mathrm{t})), e^{\mathrm{i}\nu} \sin(\mathrm{h}(\mathrm{t}))\right). \end{split}$$

Define

$$h: I \to (0,\pi/2), \ h(t) = \frac{1}{2} \mathsf{arccot}\left(\frac{f'(t)}{2}\right) = \frac{\pi}{4} - \frac{1}{2} \operatorname{arctan}\left(\frac{f'(t)}{2}\right).$$

And now, the embedding

$$\begin{split} \chi: \mathrm{I} \times \mathbb{S}^1 \times \mathbb{S}^1 \to -\mathrm{I} \times_{\mathrm{f}} \mathbb{S}^3, \\ \chi(\mathrm{t}, e^{\mathrm{i}\theta}, e^{\mathrm{i}\nu}) &= \left(\mathrm{t}, e^{\mathrm{i}\theta} \cos(\mathrm{h}(\mathrm{t})), e^{\mathrm{i}\nu} \sin(\mathrm{h}(\mathrm{t}))\right). \end{split}$$

For each $t \in I$, the surface $\phi = \chi(t, -, -) : \mathbb{S}^1 \times \mathbb{S}^1 \to \overline{M}_1^4$, is a torus, embedded in the t-slice, with constant mean curvature $\|\vec{H}_{\phi}\| = |2\cot(2u)|_{u=h(t)}| = |f'(t)|.$

Define

$$h: I \to (0, \pi/2), \ h(t) = \frac{1}{2} \text{arccot}\left(\frac{f'(t)}{2}\right) = \frac{\pi}{4} - \frac{1}{2} \arctan\left(\frac{f'(t)}{2}\right).$$

And now, the embedding

$$\begin{split} \chi: \mathrm{I} \times \mathbb{S}^1 \times \mathbb{S}^1 \to -\mathrm{I} \times_{\mathrm{f}} \mathbb{S}^3, \\ \chi(\mathrm{t}, e^{\mathrm{i}\theta}, e^{\mathrm{i}\nu}) &= \left(\mathrm{t}, e^{\mathrm{i}\theta} \cos(\mathrm{h}(\mathrm{t})), e^{\mathrm{i}\nu} \sin(\mathrm{h}(\mathrm{t}))\right). \end{split}$$

For each $t \in I$, the surface $\phi = \chi(t, -, -) : \mathbb{S}^1 \times \mathbb{S}^1 \to \overline{M}_1^4$, is a torus, embedded in the t-slice, with constant mean curvature $\|\vec{H}_{\phi}\| = |2\cot(2u)|_{u=h(t)}| = |f'(t)|.$

By our theorem, each torus is a MOTS, and therefore, χ is a MOTT.

Miguel Ortega – Univ. Granada

The induced metric is:

$$\chi^{*}\bar{g}_{4} \equiv \left(\begin{array}{ccc} \bar{g}_{4}(\chi_{t},\chi_{t}) & 0 & 0 \\ 0 & \left(f(t)\cos(h(t))\right)^{2} & 0 \\ 0 & 0 & \left(f(t)\sin(h(t))\right)^{2} \end{array} \right),$$

The causal character depends only on χ_t :

$$z(t) := \bar{g}_4(\chi_t, \chi_t) = -1 + \left(\frac{f(t)f''(t)}{4 + f'(t)^2}\right)^2.$$

$$z(t) := \bar{g}_4(\chi_t, \chi_t) = -1 + \left(\frac{f(t)f''(t)}{4 + f'(t)^2}\right)^2.$$

• Given a, b > 0 such that $a^2 = 4 + b^2$, define the function $f: I = \mathbb{R} \to (0, \infty), f(t) = a \cosh(t) + b \sinh(t)$. Then, $z(t) \equiv 0$. Therefore, χ_t is everywhere lightlike.

$$z(t) := \bar{g}_4(\chi_t, \chi_t) = -1 + \left(\frac{f(t)f''(t)}{4 + f'(t)^2}\right)^2$$

Given a, b > 0 such that $a^2 = 4 + b^2$, define the function $f: I = \mathbb{R} \to (0, \infty), f(t) = a \cosh(t) + b \sinh(t)$. Then, $z(t) \equiv 0$. Therefore, χ_t is everywhere lightlike.

Oefine the function $f: (-1, 1) \to (0, \infty)$, $f(t) = \frac{2}{1-t^2}$. By simple computations, we obtain $z(t) \ge 3$, for any $t \in (-1, 1)$, and therefore χ_t is always spacelike.

• Take real constants $c_1, c_2 > 0$. Then, the function $f : \mathbb{R} \to (0, \infty)$, $f(t) = \frac{4+c_1^2}{4c_2}t^2 + c_1t + c_2$ is well-defined. A simple computation shows $z(t) \equiv -3/4$. This implies that χ_t is everywhere timelike.

- Take real constants $c_1, c_2 > 0$. Then, the function $f : \mathbb{R} \to (0, \infty)$, $f(t) = \frac{4+c_1^2}{4c_2}t^2 + c_1t + c_2$ is well-defined. A simple computation shows $z(t) \equiv -3/4$. This implies that χ_t is everywhere timelike.
- Given the function $f : \mathbb{R} \to (0, \infty)$, $f(t) = 3 + \cos(2t)$. A straightforward computation gives

$$z(t) := -1 + \left(\frac{f(t)f''(t)}{4 + f'(t)^2}\right)^2 = -1 + \frac{4\cos^2(2t)(3 + \cos(2t))^2}{(3 - \cos(4t))^2}.$$

Finally, it is easy to check z(0) = 15 and $z(\pi/4) = -1$. In this case, the causal character changes with time.

 $\mathbb{S}^2(1/2)=\{(z,x)\in\mathbb{C}\times\mathbb{R}:|z|^2+x^2=1/4\},$ with standard metric g_2 (of radius 1/2.

The classical Hopf map is

$$\pi: \mathbb{S}^3 \to \mathbb{S}^2(1/2), \quad \pi(z,w) = \left(z\overline{w}, \frac{1}{2}|z|^2 - \frac{1}{2}|w|^2\right).$$

1 π is a Riemannian submersion.

2 For each $(z, a) \in \mathbb{S}^2(1/2)$, then $\pi^{-1}\{(z, a)\} = \text{closed geodesic in } \mathbb{S}^3$.

$$(\mathbb{S}^3, g_3)$$
$$\downarrow \pi$$
$$(\mathbb{S}^2(1/2), g_2)$$

$$\begin{array}{ccc} (\mathbb{S}^3, g_3) & (-I \times_f \mathbb{S}^3, -dt^2 + f^2 g_3) & (t,p) \\ \\ & & \downarrow \pi & & \downarrow \\ (\mathbb{S}^2(1/2), g_2) & (-I \times_f \mathbb{S}^2(1/2), -dt^2 + f^2 g_2) & (t,\pi(p)) \end{array}$$

Next, we consider a curve α in $-I\times_f \mathbb{S}^2(1/2),$

$$\begin{array}{ccc} (\mathbb{S}^3, g_3) & (-I \times_f \mathbb{S}^3, -dt^2 + f^2 g_3) & (t, p) \\ \\ \downarrow \pi & \downarrow \overline{\pi} = Id \times \pi & \downarrow \\ (\mathbb{S}^2(1/2), g_2) & (-I \times_f \mathbb{S}^2(1/2), -dt^2 + f^2 g_2) & (t, \pi(p)) \end{array}$$

Next, we consider a curve α in $-I \times_f S^2(1/2)$, and its pullback:

The geometric elements of α determine the properties of the mean curvature vector of $\pi^* \alpha$.

For instance, if α is embedded and open / closed, then $\overline{\pi}^*(\alpha)$ is an embedded cylinder / torus in $-I \times_f \mathbb{S}^3$.

These surfaces may not be contained in a single t-slice.

Consider a unit spacelike Frenet curve.

$$\begin{array}{c} \left(-I \times_{f} \mathbb{S}^{3}, -dt^{2} + f^{2}g_{3}\right) \\ & \downarrow \overline{\pi} \\ J \xrightarrow{\alpha} \left(-I \times_{f} \mathbb{S}^{2}(1/2), -dt^{2} + f^{2}g_{2}\right) \end{array}$$

Consider a unit spacelike Frenet curve. Let β be a **horizontal lift** of α .

$$\begin{array}{ccc} J & \stackrel{\beta}{\longrightarrow} & \left(-I \times_{f} \mathbb{S}^{3}, -dt^{2} + f^{2}g_{3}\right) \\ \\ \parallel & & & \downarrow^{\overline{\pi}} \\ J & \stackrel{\alpha}{\longrightarrow} & \left(-I \times_{f} \mathbb{S}^{2}(1/2), -dt^{2} + f^{2}g_{2}\right) \end{array}$$

Consider a unit spacelike Frenet curve. Let β be a **horizontal lift** of α .

$$\begin{array}{ccc} J & \stackrel{\beta}{\longrightarrow} & \left(-I \times_{f} \mathbb{S}^{3}, -dt^{2} + f^{2}g_{3}\right) \\ \\ \parallel & & & \downarrow \overline{\pi} \\ J & \stackrel{\alpha}{\longrightarrow} & \left(-I \times_{f} \mathbb{S}^{2}(1/2), -dt^{2} + f^{2}g_{2}\right) \end{array}$$

Also, for each $e^{i\theta} \in \mathbb{S}^1$, the map

 $\overline{\Gamma}_{\theta}: -I \times_{f} \mathbb{S}^{3} \to -I \times_{f} \mathbb{S}^{3}, \quad \overline{\Gamma}_{\theta}(t, (z, w)) = \left(t, (e^{i\theta}z, e^{i\theta}w)\right)$

is an isometry. Now, define:

 $\varphi: \overline{\pi}^*(\alpha) = J \times \mathbb{S}^1 \to -I \times_f \mathbb{S}^3, \quad \varphi(s, \theta) = \overline{\Gamma}_{\theta}(\beta(s)).$

 ϕ is just a parametrization of the surface $\overline{\pi}^*(\alpha)$.

If $\overline{g}_3 = -dt^2 + f^2g_2$ is the line element, let $\alpha : J \subset \mathbb{R} \to -I \times_f \mathbb{S}^2(1/2)$ be a unit spacelike Frenet curve with Frenet apparatus $\{T = \dot{\alpha}, N, B\}$ and κ , τ , i.e.

$$abla_{\mathsf{T}}\mathsf{T} = \epsilon_2 \kappa \mathsf{N}, \quad \nabla_{\mathsf{T}}\mathsf{N} = \kappa \mathsf{T} + \epsilon_3 \tau \mathsf{B}, \quad \nabla_{\mathsf{T}}\mathsf{B} = -\epsilon_2 \tau \mathsf{N},$$

where $\epsilon_2 = \overline{g}_3(N, N)$, $\epsilon_3 = \overline{g}_3(B, B)$, $\epsilon_2 = -\epsilon_3 = \pm 1$, and $\{T, N, B\}$ is a positive basis along α .

Let \tilde{N} and \tilde{B} be horizontal lifts of N and B, resp., along $\beta.$

Lemma

The mean curvature vector of ϕ is given by

$$\vec{H}_{\varphi} = \frac{\varepsilon_2}{2} \left(\kappa + \frac{f'}{f} \overline{g}_3(\vartheta_t, N) \right) (\overline{\Gamma}_{\theta})_* \tilde{N} + \frac{\varepsilon_3}{2} \left(\frac{f'}{f} \overline{g}_3(\vartheta_t, B) \right) (\overline{\Gamma}_{\theta})_* \tilde{B}$$

Proposition

The mean curvature vector \vec{H}_{Φ} satisfies $\|\vec{H}_{\Phi}\| = 0$ iff

$$\left(\kappa + \frac{f'}{f}\overline{g}_{3}(\vartheta_{t}, N)\right)^{2} - \left(\frac{f'}{f}\overline{g}_{3}(\vartheta_{t}, B)\right)^{2} = 0.$$

We obtained an **open** embedded surface with null mean curvature vector, and crossing two regions (expanding and conllapsing).

We obtained an **open** embedded surface with null mean curvature vector, and crossing two regions (expanding and conllapsing).

Open problem

To obtain an explicit MOTS in the 4-dim closed FLRW spacetime, which is not contained in any t-slice, from a closed curve in the toy model $-I \times_f \mathbb{S}^2(1/2)$.

Conclusions

- There exist MOTS in closed FLRW 4-spacetimes embedded in t_o-slices with arbitrary topology.
- This leads to MOTT in closed FLRW 4-spacetimes.
- From a curve in a (toy model) closed FLRW 3-spacetime $\begin{array}{l} \alpha: J \rightarrow (-I \times_f \mathbb{S}^2(1/2), -dt^2 + f^2g_2) \text{, it is possible to construct} \\ \text{embedded cylinders and tori in the closed FLRW 4-spacetime} \\ (-I \times_f \mathbb{S}^3, -dt^2 + f^2g_3) \text{ with some control of the mean curvature} \\ \text{vector.} \end{array}$
- Problem: to construct such a tori which is also a MOTS.

J. L. Flores, S. Haesen, M. Ortega, *Class. Quantum Grav.* 27 (2010)

Thank you very much for your attention!!

Miguel Ortega – Univ. Granada