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= Here we consider the following problem:

The End

Can we construct a Lagrangian-based phenomenological yhefagravity
free from singularities and as successful as GR at low easrgiithout
introducing extra fields or new degrees of freedom?

= A (Hamiltonian-based) example sharing this phllosophyrm/pnled by
some toy models cf
1 The effective dynamics af replaces the Big
Bang singularity by @&osmic bounceising second-order equations
(like GR). The bounce is due twon-perturbative quantum effects
1 Lagrangians yielding similar dynamics could answer ourstjoa and
establish a link witH and related approaches.
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The End

= Sinceexact isotropy is a very strong idealizatjdrere we consider the
behavior off (R) and other Palatini theories amisotropic scenarios

= We will see that:

7 f(R) models with isotropic bouncing solutions generically depe
shear singularities anisotropicscenarios.

[ Completely regular isotropic and anisotropic bouncingisohs
existin f(R Q) models whereQ = R(W)R(“"), thus providing a
promising arena to build a non-singular theory of gravity.

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 3/18




e Motivation and Summary
e Motivation and Summary

LQC and bouncing (R) models

e Palatinif(R) theories

e Finding the CEA

e Other nonsingulaf (R) models
e Characterizing thé (R) Bounce

et LQC and other bouncing  f(R) models

Beyondf(R)

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 4/18




Palatini f(R) theories

= Action and field equations of Palatifi(R) theories:
= 52 L [d**,/=gf(R)+ Sm(Gw, ) , where(g, Iz, ) are independent.
LQC and bouncing (R) models

Oo (VEGTRGPY) =0 = 18, % oo 2otp] » WheTe by = gy

e Other nonsingulaf (R) models

e Motivation and Summary
e Motivation and Summary

e Characterizing thé (R) Bounce

Beyond isotropy inf (R) models

Beyondf(R)

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 5/18




e Motivation and Summary
e Motivation and Summary

LQC and bouncing (R) models
e Palatinif(R) theories

e Finding the CEA

e Other nonsingulaf (R) models
e Characterizing thé (R) Bounce

Beyond isotropy inf (R) models

Beyondf(R)

The End

Gonzalo J. Olmo

Palatini f(R) theories

= Action and field equations of Palatifi(R) theories:
— %2 fd4Xv 9f(R) + Sn(gw,P) , where(gw, T Bv) are independent.

g (N/—nggBV> =0 = 8 =1 [ogtoy+ovtop —pt,| » Where tyy = fROp -

= Trace Equation RfR—2f =k*T = R=2%(T)

Granada, 8 Sept 2010 - p. 5/18




e Motivation and Summary
e Motivation and Summary

LQC and bouncing (R) models
e Palatinif(R) theories

e Finding the CEA

e Other nonsingulaf (R) models
e Characterizing thé (R) Bounce

Beyond isotropy inf (R) models

Beyondf(R)

The End

Gonzalo J. Olmo

Palatini f(R) theories

= Action and field equations of Palatifi(R) theories:
— %2 fd4Xv 9f(R) + Sn(gw,P) , where(gw, T Bv) are independent.

fRRw (M) — 30w f(R) = KZTuv
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ap
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= Trace Equation RfR—2f =k*T = R=2%(T)

= Resulting equations for the met@g\,:
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In short: Gy (9) =
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= Resulting equations for the met@g\,:

G (9) = £ Tw — 255" g - 2f2 (9ufroy fR— 30 (9TR)?) +

2
In short: Guy(9) = =Ty + T (T)

= Note that in vacuum Gy (g) = —AefQu , With Aesf =

= Palatini f (R) looks like GR with a modified source !!!
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2fr | g
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Other nonsingular f(R) models

= The LQC Lagrangian is not the onf{ R) model that avoids the Big Bang

singularity. The simple mod¢ f(R) = R+ a% can also do the job:
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R
f(R=R-— , w=0

LQC and bouncing (R) models 2 R
e Palatinif(R) theories 2 P
e Finding the CEA H

e Other nonsingulaf (R) models L K
» | — K>0

o Characterizing thé(R) Bounce | eTT T

Beyond isotropy inf (R) models

Beyondf(R)

The End

| | | | | | | | | | | 1 | | L L L 2
0.2 0.4 0.6 0.8 10X P/Re

= The Hubble function begins growing linearly, then reachesaimum
and drops to zero at high energies producing a cosmic bounce.
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Other nonsingular f(R) models

= The LQC Lagrangian is not the onf{ R) model that avoids the Big Bang

singularity. The simple modt¢ f(R) = R+ a%

R2
GR-Vs- f(R)= R— ——
2R,

— f(R),K>0

--—— GR,K>0

f(R), K=0

GR, K=0

—  f(R),K<0

--—— GR,K<0

1 1

T T T B S S S R | v | t
-30C -25C -200 -15C0 -100C —-50 0

can also do the job:

= Starting with a contracting phase, the expansion fact@sira minimum

and bounce to our expanding universe.
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Beyondf(R)

= |f f(R) =~ Ratlow energies, onlyfr = 0 OCCUTI'S. - arragén & Oimo (2010)

The End

(fRR[6(1+W) f—(1+3w)Rfg]— fFZQ)
fRRfRR-TR)

0 Assuming oRr)=2(1+ 34) = such thag(R) ~ 1 at

low R but diverges aRp, and denoting = Rye*®), we find

ARRHAE 2—g(R)]
A T 6(1+w)—[1+3w+g(R)RAR

10 SinceRAR > 0, the denominator may vanish @dR) grows. A true
bounce can only happen whg(R) — o, but that requires thaj(R)Ar
be finite to exactly cancel out with the other terms. Since ¢ain only
happen ifAr = 0 = fR, the conditiorR frr— fr is excluded.
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The End
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= Anisotropic bouncing cosmologies requfie= 0. ThereforeH? and
0% /(1+3A1/2)? must vanish simultaneously. However,

SinceH? can only vanish wherir = 0 and that implies a di-
vergence ofo” ~ 1/f2, Palatini f(R) models turn out to be
unstable under anisotropic perturbations.
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The End

= Anisotropic bouncing cosmologies requfie= 0. ThereforeH? and
0% /(1+3A1/2)? must vanish simultaneously. However,

SinceH? can only vanish wherir = 0 and that implies a di-
vergence ofo” ~ 1/f2, Palatini f(R) models turn out to be
unstable under anisotropic perturbations.

= Note that RygpoRMP ~ 1/f3 confirms that the divergence of is a true
geometrical singularity.
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From f(R)to f(R Q)

= Palatini f (R) theoriesgreatly improved the situatioof the isotropic
scenario as compared to GR.

= Qur studies have led us to the limits bfR): they are not the final answer
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A natural next step is to explore Palatini theories with othavature
invariants. To avoid the appearance of new degrees of fregde restrict

ourselves to theories of the forfifR, Q), with Q = Ry,,)RW)

OIlmo, Sanchis-Alepuz, & Tripathi (2009) ; Vitagliano, Sotiriou, & Liberati (2010)

In such theories the indep. connection is the Levi-Civita of

A= /2foh+ B | Ny = /2To(A £ /A2—K2(p+P)) , and

f2

A= \/K2P+ + 8fQ

We also find tha R=R(p,P) , Q= Q(p,P) , which implies a
phenomenology much richer than thatf@R) theories.
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Explicitly solvable

f(R, Q) models

= For physical applications, we need solvable mod R(p,P),Q(p,P) .

= Simplest solvable model: f(R Q) =

~ (Hv)
f(R) + S

0 Trace equatiol 201y +Rig -2t =k2T = Rfr—2f =k?T = R=R(T).

[ Trace of

2le\7|

(R%-l-fR

fi

)j:\/(R%‘F R

2
)2 _ 4K2(p+P)
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f(R) + S

0 Trace equatiol 201y +Rig -2t =k2T = Rfr—2f =k?T = R=R(T).

L Trace of 2fQ|\7I : 2% :_<K2p+£+ BSBf”2>

R?

= Example: f(R,Q) =R+ag: + %

Rp

Rp
32

(kv)

() (8-

with a= —1/2 and R= —Kk?T

2 4 2

3k°(P+p)°

15k8(P+p)*

Expanding: Q ~ k* (3P% +p?) +

2Rp

_|_
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2
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e Solvable models

e Details of f(R Q)

Isotropic bounce irf (R W) (W) .
o e = Example: f(R Q) =R+ a% + R(“I)J: witha= —1/2 and R= —k°T

e Details ofa< 0
e Conclusions

The Ene o % 1 ZKZg)PwLP) 24 ( p 3P’ \/1_ 4K%(p-+P) ]

6 3 8 4
Expanding: Q ~ k* (3P2 4 p?) 4 X (ZPR;fp) + 15'(4(;?)) — ..

= p and P arebounded from above 1— @ >0

We expectmportant changes in the dynamics at high curvat(iBeg
Bang, Black Holes,...).
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Beyondf (R)
e Fromf(R)to f(R Q)

« Solvable models = |n Bianchi | f(R, Q) spacetimes we find

Details of f (R Q

Isotropic bounce irf (R Q) 2 2 2
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= The bouncing conditio® = 0 requires tha (1+
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= The connection equation implies th‘%y is the Levi-Civita of

iy = (gw ’\ u“u\,) where
T Q=MM-MIYE 0 A = /2Th+ B
0 )\:\/K2p+%+% 0 AZ:\/%[)\i\/)\Z—KZ(ijP)}
= |n Bianchil f(R Q) spacetimes we find
187 =0H"+ z(lTszm 0 Ay =—(14+wW)pdpQ/Q

= The bouncing conditio® = 0 requires tha (1+ §A1)2 — 00,

R2 v R(w)
= Forthe mode f(R Q) =R+ag; + “RP

0If (A1 —/N\2) — 0 at somepg then isotropic bounce is possible.

0 1f Q= Qmax a regular isotropic and anisotropic bounce is possible.
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= The classification of the bouncing solutions for

f(RQ) =R+ a% + @ is as follows:

(a,w) in f(R Q)
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0pQ ~ 0pA ~ 0,Q andQ contains a term of the forny® which vanishes
atQmax The density at the maximum is given by

e From (R0 f(R Q) K2 POmax _ 1+5w—2a(1—3w) —4/8(1+w) (2w—a(1—3w))
e Solvable models RP (1—|—23.) (1 3W)2

e Details of f (R Q)
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e Isotropic bounce irf (R Q)

« Detais ofa < 0 7 The bounce occurs at that densit w > -5

e Conclusions

The End
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Beyond isotropy inf (R) models szB . (1—|-a)(1-|—4a)(1—3W)2 |f W S WO
_ 2
i K%pg -
o romf(R) to f(R Q) RPmaX If W Z WO
e Solvable models
e Details of f (R Q) . .
T e 0 Note thatwg is always negative.
e Details ofa< 0 . .
P, 1 Forw > wg the bounce is due to reachi Qmax .
The End 0 Forw < wg the bounce is due to the vanishing A1 — A\ .
Isotropic Vﬁo
Isotropic and
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Bounces
Singularity .
/ '\\
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Details of a < 0O isotropic bounces

How negative camv be extended beyond the matching pmg?

If —1/4<a<0 restricted by the argument of the square root for

w<WwWp = — 3+ 3/ R cw<o

If a= —1/4 the density at the bounce is given by

— —1/3<w<

1
szB B 3%1+3W)
Rp

If —1/3<a< —1/4 Though here the square root is always real, we
find numerically that the bouncing solutions cannot be edéebeyond
the valuew < —1, wherepg reaches a maximum —1<w< o

If -1<a<-1/3 here—1 < walso. We also find restrictions far > 1

a+Pa
(1+3a)?

due to zeros in the denominatorldf. = —1<w< >1

wherea = 1.1335 and3 = —3.3608.
If a< —1 wdepends on the squarereet —1<w< a/(2+3a) .

Note that dust and radiation are always non-singular!!!
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Conclusions and Perspectives

= Palatini theories have an extraordinary ability to avortgsiarities
without the need for extra degrees of freedom:

[ Using f (R) Lagrangians we reproduced the isotropi¢cC dynamics.
7 Other simple models f(R) = R+R?/Rp , also avoid the big bang.

f (R Q) Lagrangians generate bouncing solutions in anisotropenscios
and for standard sources of matter and radiatiOns w < 1/3 !l
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e |sotropic bounce irf (R Q)
e Details ofa<0

= The independent connection is fundamentad\toid new degrees of
The End freedomand yieldnon-linear matter contributiorthat generate the
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= Natural future directions:

1 Cosmology of other Bianchi models.

0 Gravitational collapse and structure of compact objecty R Q).
1 Exploration of more general quadratic Lagrangians.

1 Hamiltonian description of general Palatini theories.
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