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Motivation and Summary

■ TheBig Bang singularityis regarded as a problem that only a fullquantum

theory of gravitycan solve. But we do not have yet such a theory.
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Motivation and Summary

■ TheBig Bang singularityis regarded as a problem that only a fullquantum

theory of gravitycan solve. But we do not have yet such a theory.

■ Phenomenological attempts to avoid singularities with effective theories

generally requirenew degrees of freedom(non-local terms, extra fields, higher-order equations),

which are excited and become important at increasing energies.
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■ TheBig Bang singularityis regarded as a problem that only a fullquantum

theory of gravitycan solve. But we do not have yet such a theory.

■ Phenomenological attempts to avoid singularities with effective theories

generally requirenew degrees of freedom(non-local terms, extra fields, higher-order equations),

which are excited and become important at increasing energies.

■ Here we consider the following problem:

Can we construct a Lagrangian-based phenomenological theory of gravity

free from singularities and as successful as GR at low energies without

introducing extra fields or new degrees of freedom?
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Motivation and Summary

■ TheBig Bang singularityis regarded as a problem that only a fullquantum

theory of gravitycan solve. But we do not have yet such a theory.

■ Phenomenological attempts to avoid singularities with effective theories

generally requirenew degrees of freedom(non-local terms, extra fields, higher-order equations),

which are excited and become important at increasing energies.

■ Here we consider the following problem:

Can we construct a Lagrangian-based phenomenological theory of gravity

free from singularities and as successful as GR at low energies without

introducing extra fields or new degrees of freedom?

■ A (Hamiltonian-based) example sharing this philosophy is provided by

some toy models ofcanonical quantum gravity:
◆ The effective dynamics ofLoop Quantum Cosmologyreplaces the Big

Bang singularity by acosmic bounceusing second-order equations

(like GR). The bounce is due tonon-perturbative quantum effects.
◆ Lagrangians yielding similar dynamics could answer our question and

establish a link withLQC and related approaches.
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Motivation and Summary
■ A partial answer to our question was found recently in the form of an f (R)

theory inPalatiniformalismwhich could exactlyreproduce the effective

dynamics of isotropicLQC – Olmo & Sing (2009).
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Motivation and Summary
■ A partial answer to our question was found recently in the form of an f (R)

theory inPalatiniformalismwhich could exactlyreproduce the effective

dynamics of isotropicLQC – Olmo & Sing (2009).

■ Besides the LQC Lagrangian, many other Palatinif (R) theories yield

non-singular isotropic cosmologies based purely on second-order

equations– Barragán,Olmo & Sanchis-Alepuz (2009).
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■ A partial answer to our question was found recently in the form of an f (R)

theory inPalatiniformalismwhich could exactlyreproduce the effective

dynamics of isotropicLQC – Olmo & Sing (2009).

■ Besides the LQC Lagrangian, many other Palatinif (R) theories yield

non-singular isotropic cosmologies based purely on second-order

equations– Barragán,Olmo & Sanchis-Alepuz (2009).

■ Sinceexact isotropy is a very strong idealization, here we consider the

behavior off (R) and other Palatini theories inanisotropic scenarios.
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Motivation and Summary
■ A partial answer to our question was found recently in the form of an f (R)

theory inPalatiniformalismwhich could exactlyreproduce the effective

dynamics of isotropicLQC – Olmo & Sing (2009).

■ Besides the LQC Lagrangian, many other Palatinif (R) theories yield

non-singular isotropic cosmologies based purely on second-order

equations– Barragán,Olmo & Sanchis-Alepuz (2009).

■ Sinceexact isotropy is a very strong idealization, here we consider the

behavior off (R) and other Palatini theories inanisotropic scenarios.

■ We will see that:

◆ f (R) models with isotropic bouncing solutions generically develop

shear singularitiesin anisotropicscenarios.
◆ Completely regular isotropic and anisotropic bouncing solutions

exist in f (R,Q) models, whereQ≡ R(µν)R
(µν), thus providing a

promising arena to build a non-singular theory of gravity.



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

● Palatini f (R) theories

● Finding the CEA

● Other nonsingularf (R) models

● Characterizing thef (R) Bounce

Beyond isotropy inf (R) models

Beyond f (R)

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 4/18

LQC and other bouncing f (R) models
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Palatini f (R) theories
■ Action and field equations of Palatinif (R) theories:

S= 1
2κ2

∫

d4x
√
−g f(R)+Sm(gµν,ψ) , where(gµν,Γα

βγ) are independent.

fRRµν(Γ)− 1
2gµν f (R) = κ2Tµν , where fR ≡ d f/dR.

∇α
(√

−g fRgβγ
)

= 0 ⇒ Γα
βγ = tαρ

2

[

∂βtργ +∂γtρβ −∂ρtβγ
]

, where tµν = fRgµν .
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■ Trace Equation:R fR−2 f = κ2T ⇒ R= R (T)
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Palatini f (R) theories
■ Action and field equations of Palatinif (R) theories:

S= 1
2κ2

∫

d4x
√
−g f(R)+Sm(gµν,ψ) , where(gµν,Γα

βγ) are independent.

fRRµν(Γ)− 1
2gµν f (R) = κ2Tµν , where fR ≡ d f/dR.

∇α
(√

−g fRgβγ
)

= 0 ⇒ Γα
βγ = tαρ

2

[

∂βtργ +∂γtρβ −∂ρtβγ
]

, where tµν = fRgµν .

■ Trace Equation:R fR−2 f = κ2T ⇒ R= R (T)

■ Resulting equations for the metricgµν:

Gµν(g) = κ2

fR
Tµν − R fR− f

2 fR
gµν − 3

2 f 2
R

(

∂µ fR∂ν fR− 1
2gµν(∂ fR)2

)

+ 1
fR

(

∇µ∇ν fR−gµν� fR
)

In short: Gµν(g) = κ2

fR
Tµν + τµν(T)
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Palatini f (R) theories
■ Action and field equations of Palatinif (R) theories:

S= 1
2κ2

∫

d4x
√
−g f(R)+Sm(gµν,ψ) , where(gµν,Γα

βγ) are independent.

fRRµν(Γ)− 1
2gµν f (R) = κ2Tµν , where fR ≡ d f/dR.

∇α
(√

−g fRgβγ
)

= 0 ⇒ Γα
βγ = tαρ

2

[

∂βtργ +∂γtρβ −∂ρtβγ
]

, where tµν = fRgµν .

■ Trace Equation:R fR−2 f = κ2T ⇒ R= R (T)

■ Resulting equations for the metricgµν:

Gµν(g) = κ2

fR
Tµν − R fR− f

2 fR
gµν − 3

2 f 2
R

(

∂µ fR∂ν fR− 1
2gµν(∂ fR)2

)

+ 1
fR

(

∇µ∇ν fR−gµν� fR
)

In short: Gµν(g) = κ2

fR
Tµν + τµν(T)

■ Note that in vacuum:Gµν(g) = −Λe f fgµν , with Λe f f ≡ R fR− f
2 fR

∣

∣

∣

R →R0

.
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Palatini f (R) theories
■ Action and field equations of Palatinif (R) theories:

S= 1
2κ2

∫

d4x
√
−g f(R)+Sm(gµν,ψ) , where(gµν,Γα

βγ) are independent.

fRRµν(Γ)− 1
2gµν f (R) = κ2Tµν , where fR ≡ d f/dR.
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[
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]
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■ Trace Equation:R fR−2 f = κ2T ⇒ R= R (T)

■ Resulting equations for the metricgµν:
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fR
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gµν − 3
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(

∂µ fR∂ν fR− 1
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)

+ 1
fR

(

∇µ∇ν fR−gµν� fR
)

In short: Gµν(g) = κ2

fR
Tµν + τµν(T)

■ Note that in vacuum:Gµν(g) = −Λe f fgµν , with Λe f f ≡ R fR− f
2 fR

∣

∣

∣

R →R0

.

■ Palatini f (R) looks like GR with a modified source !!!
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Finding the LQC effective action

■ In a FRW Universeds2 = −dt2 +a2(t)d~x2 . In GR 3(ȧ/a)2 = κ2ρ

■ For a massless scalar, the Hubble functionH = ȧ/a is given by

◆ In LQC: 3H2 = 8πGρ
(

1− ρ
ρcrit

)

, with ρcrit = 0.41ρPlanck .

◆ In Palatini f (R): 3H2 =
fR(κ2ρ+(R fR− f )/2)
(

fR−
12κ2ρ fRR

2(R fRR− fR)

)2 .



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

● Palatini f (R) theories

● Finding the CEA

● Other nonsingularf (R) models

● Characterizing thef (R) Bounce

Beyond isotropy inf (R) models

Beyond f (R)

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 6/18

Finding the LQC effective action

■ In a FRW Universeds2 = −dt2 +a2(t)d~x2 . In GR 3(ȧ/a)2 = κ2ρ
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■ For a massless scalar, the Hubble functionH = ȧ/a is given by
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◆ In Palatini f (R): 3H2 =
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(

fR−
12κ2ρ fRR

2(R fRR− fR)
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■ The trace Equation,R fR−2 f = 2κ2ρ , implies ⇒ ρ = ρ(R )
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Finding the LQC effective action

■ In a FRW Universeds2 = −dt2 +a2(t)d~x2 . In GR 3(ȧ/a)2 = κ2ρ

■ For a massless scalar, the Hubble functionH = ȧ/a is given by

◆ In LQC: 3H2 = 8πGρ
(

1− ρ
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)
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◆ In Palatini f (R): 3H2 =
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)2 .

■ The trace Equation,R fR−2 f = 2κ2ρ , implies ⇒ ρ = ρ(R )

■ Equating the R.H.S. of these equations:8πGρ
(

1− ρ
ρcrit

)

=
fR(κ2ρ+(R fR− f )/2)
(

fR−
12κ2ρ fRR

2(R fRR− fR)

)2

■ We find the following o.d.e.: fRR= − fR
(

A fR−B
2(R fR−3 f )A+R B

)

,

where A =
√

2(R fR−2 f )(2R c− [R fR−2 f ]) ,

B = 2
√

R c fR(2R c fR−3 f ) , and R c ≡ κ2ρc .



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

● Palatini f (R) theories

● Finding the CEA

● Other nonsingularf (R) models

● Characterizing thef (R) Bounce

Beyond isotropy inf (R) models

Beyond f (R)

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 6/18

Finding the LQC effective action

■ In a FRW Universeds2 = −dt2 +a2(t)d~x2 . In GR 3(ȧ/a)2 = κ2ρ

■ For a massless scalar, the Hubble functionH = ȧ/a is given by

◆ In LQC: 3H2 = 8πGρ
(

1− ρ
ρcrit

)

, with ρcrit = 0.41ρPlanck .

◆ In Palatini f (R): 3H2 =
fR(κ2ρ+(R fR− f )/2)
(

fR−
12κ2ρ fRR

2(R fRR− fR)

)2 .

■ The trace Equation,R fR−2 f = 2κ2ρ , implies ⇒ ρ = ρ(R )

■ Equating the R.H.S. of these equations:8πGρ
(

1− ρ
ρcrit

)

=
fR(κ2ρ+(R fR− f )/2)
(

fR−
12κ2ρ fRR

2(R fRR− fR)

)2

■ We find the following o.d.e.: fRR= − fR
(

A fR−B
2(R fR−3 f )A+R B

)

,

where A =
√

2(R fR−2 f )(2R c− [R fR−2 f ]) ,

B = 2
√

R c fR(2R c fR−3 f ) , and R c ≡ κ2ρc .

■ This leads to aunique solutionwith fR → 1 when R→ 0 satisfying

äLQC = äPal at ρ = ρc – Olmo & Sing (2009).
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Other nonsingular f (R) models
■ The LQC Lagrangian is not the onlyf (R) model that avoids the Big Bang

singularity. The simple modelf (R) = R+aR2

RP
can also do the job:

0.2 0.4 0.6 0.8 1.0
Κ

2
Ρ�RP

0.01

0.02

0.03

0.04

0.05

H2

f HRL= R-
R2

2 RP
, Ω=0

K<0

K=0

K>0

■ The Hubble function begins growing linearly, then reaches amaximum

and drops to zero at high energies producing a cosmic bounce.
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Other nonsingular f (R) models
■ The LQC Lagrangian is not the onlyf (R) model that avoids the Big Bang

singularity. The simple modelf (R) = R+aR2

RP
can also do the job:

-300 -250 -200 -150 -100 -50 0
t

0.2

0.4

0.6

0.8

1.0
a@tD

GR-Vs- f HRL= R-
R2

2 Rp

GR , K<0

f HRL , K<0

GR , K=0

f HRL , K=0

GR , K>0

f HRL , K>0

■ Starting with a contracting phase, the expansion factors reach a minimum

and bounce to our expanding universe.
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Characterizing the f (R) Bounce.
■ For a generalf (R) theory, the Hubble function is given by (P = wρ)

H2 = 1
6 fR

[

f+κ2(ρ+3P)− 6K fR
a2

]

[1+ 3
2 ∆̃1]

2 where ∆̃1 = −(1+w)ρ(∂ρ fR)/ fR .
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Characterizing the f (R) Bounce.
■ For a generalf (R) theory, the Hubble function is given by (P = wρ)

H2 = 1
6 fR

[

f+κ2(ρ+3P)− 6K fR
a2

]

[1+ 3
2 ∆̃1]

2 where ∆̃1 = −(1+w)ρ(∂ρ fR)/ fR .

■ A cosmic bounce occurs wheneverH2 = 0 , which may happen if:

◆ I: fR(R fRR− fR) = 0 because∆̃1 =
(1+w)(1−3w)κ2ρ fRR

fR(R fRR− fR)
.

◆ II: f +κ2(ρ+3P)−6K fR/a2 = 0 .
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Characterizing the f (R) Bounce.
■ For a generalf (R) theory, the Hubble function is given by (P = wρ)

H2 = 1
6 fR

[

f+κ2(ρ+3P)− 6K fR
a2

]

[1+ 3
2 ∆̃1]

2 where ∆̃1 = −(1+w)ρ(∂ρ fR)/ fR .

■ A cosmic bounce occurs wheneverH2 = 0 , which may happen if:

◆ I: fR(R fRR− fR) = 0 because∆̃1 =
(1+w)(1−3w)κ2ρ fRR

fR(R fRR− fR)
.

◆ II: f +κ2(ρ+3P)−6K fR/a2 = 0 .

■ If f (R) ≈ Rat low energies, onlyfR = 0 occurs. – Barragán & Olmo (2010)

◆ Assuming g(R) = 2
(

1+ 3
2 ∆̃1

)

=

(

fRR[6(1+w) f−(1+3w)R fR]− f 2
R

)

fR(R fRR− fR)
such thatg(R) ≈ 1 at

low Rbut diverges atRP, and denotingf = R0eλ(R), we find
λRR+λ2

R

λ2
R

=
[2−g(R)]

6(1+w)−[1+3w+g(R)]RλR

◆ SinceRλR > 0, the denominator may vanish asg(R) grows. A true

bounce can only happen wheng(R) → ∞, but that requires thatg(R)λR

be finite to exactly cancel out with the other terms. Since this can only

happen ifλR = 0 = fR, the conditionR fRR− fR is excluded.
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Beyond isotropy in f (R) models
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Anisotropies in f (R): the end of a dream.
■ Consider a Bianchi I universe:ds2 = −dt2 +∑i a

2
i (dxi)2
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■ Consider a Bianchi I universe:ds2 = −dt2 +∑i a
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i (dxi)2

■ Magnitudes of interest: (Hi = ȧi
ai

)

◆ Expansion: θ = ∑i Hi ⇒ θ2 = 9H2 + 3
2

σ2

(1+ 3
2 ∆̃1)2

◆ Shear: σ2 = ∑i

(

Hi − θ
3

)2
⇒ σ2 = ρ

2
1+w

f 2
R

(C2
12+C2

23+C2
31)

3

whereC12+C23+C31 = 0.

◆ Conservation equation:̇ρ = −θ(ρ+P)
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whereC12+C23+C31 = 0.

◆ Conservation equation:̇ρ = −θ(ρ+P)

■ Anisotropic bouncing cosmologies requireθ = 0. Therefore,H2 and

σ2/(1+3∆1/2)2 must vanish simultaneously. However,

SinceH2 can only vanish whenfR = 0 and that implies a di-

vergence ofσ2 ∼ 1/ f 2
R, Palatini f (R) models turn out to be

unstable under anisotropic perturbations.



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

Beyond isotropy inf (R) models

● Anisotropies inf (R)

Beyond f (R)

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 10/18

Anisotropies in f (R): the end of a dream.
■ Consider a Bianchi I universe:ds2 = −dt2 +∑i a

2
i (dxi)2

■ Magnitudes of interest: (Hi = ȧi
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◆ Conservation equation:̇ρ = −θ(ρ+P)

■ Anisotropic bouncing cosmologies requireθ = 0. Therefore,H2 and

σ2/(1+3∆1/2)2 must vanish simultaneously. However,

SinceH2 can only vanish whenfR = 0 and that implies a di-

vergence ofσ2 ∼ 1/ f 2
R, Palatini f (R) models turn out to be

unstable under anisotropic perturbations.

■ Note that RµνσρRµνσρ ∼ 1/ f 4
R confirms that the divergence ofσ2 is a true

geometrical singularity.



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

Beyond isotropy inf (R) models

Beyond f (R)

● From f (R) to f (R Q)

● Solvable models

● Details of f (R Q)

● Isotropic bounce inf (R Q)

● Details ofa≤ 0

● Conclusions

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 11/18

Beyond f (R)



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

Beyond isotropy inf (R) models

Beyond f (R)

● From f (R) to f (R Q)

● Solvable models

● Details of f (R Q)

● Isotropic bounce inf (R Q)

● Details ofa≤ 0

● Conclusions

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 12/18

From f (R) to f (R,Q)

■ Palatini f (R) theoriesgreatly improved the situationof the isotropic

scenario as compared to GR.



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

Beyond isotropy inf (R) models

Beyond f (R)

● From f (R) to f (R Q)

● Solvable models

● Details of f (R Q)

● Isotropic bounce inf (R Q)

● Details ofa≤ 0

● Conclusions

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 12/18

From f (R) to f (R,Q)

■ Palatini f (R) theoriesgreatly improved the situationof the isotropic

scenario as compared to GR.

■ Our studies have led us to the limits off (R): they are not the final answer.



● Motivation and Summary

● Motivation and Summary

LQC and bouncingf (R) models

Beyond isotropy inf (R) models

Beyond f (R)

● From f (R) to f (R Q)

● Solvable models

● Details of f (R Q)

● Isotropic bounce inf (R Q)

● Details ofa≤ 0

● Conclusions

The End

Gonzalo J. Olmo Granada, 8 Sept 2010 - p. 12/18

From f (R) to f (R,Q)

■ Palatini f (R) theoriesgreatly improved the situationof the isotropic

scenario as compared to GR.

■ Our studies have led us to the limits off (R): they are not the final answer.

■ A natural next step is to explore Palatini theories with other curvature
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■ In such theories the indep. connection is the Levi-Civita of

hµν = Ω
(

gµν − Λ2
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, where Ω =
√

Λ1(Λ1−Λ2) ,

Λ1 =
√

2 fQλ+ fR
2 , Λ2 =

√

2 fQ(λ±
√
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■ We also find thatR= R(ρ,P) , Q = Q(ρ,P) , which implies a

phenomenology much richer than that off (R) theories.
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Explicitly solvable f (R,Q) models
■ For physical applications, we need solvable models:R(ρ,P),Q(ρ,P) .

■ Simplest solvable models:f (R,Q) = f̃ (R)+
R(µν)R(µν)

RP

◆ Trace equation2Q fQ +R fR−2 f = κ2T ⇒ Rf̃R−2 f̃ = κ2T ⇒ R= R(T) .

◆ Trace of
√

2 fQM̂ : Q
2RP

= −
(

κ2P+
f̃
2 +

RP
8 f̃ 2

R

)

+
RP
32
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R
RP

+ f̃R
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±

√
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R
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+ f̃R
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− 4κ2(ρ+P)
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■ Example: f (R,Q) = R+aR2

RP
+

R(µν)R(µν)

RP
with a = −1/2 and R= −κ2T

Q =
3R2

P
8

[

1− 2κ2(ρ+P)
RP

+
2κ4(ρ−3P)2

3R2
P

−
√

1− 4κ2(ρ+P)
RP

]

Expanding: Q≈ κ4
(

3P2 +ρ2
)

+
3κ6(P+ρ)3

2RP
+

15κ8(P+ρ)4

4RP
2 + . . .
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■ Example: f (R,Q) = R+aR2

RP
+

R(µν)R(µν)

RP
with a = −1/2 and R= −κ2T

Q =
3R2

P
8

[

1− 2κ2(ρ+P)
RP

+
2κ4(ρ−3P)2

3R2
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−
√

1− 4κ2(ρ+P)
RP

]

Expanding: Q≈ κ4
(

3P2 +ρ2
)

+
3κ6(P+ρ)3

2RP
+

15κ8(P+ρ)4

4RP
2 + . . .

■ ρ and P arebounded from above: 1− 4κ2(ρ+P)
RP

≥ 0

We expectimportant changes in the dynamics at high curvatures(Big

Bang, Black Holes,...).
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Details of f (R,Q) in FRW and Bianchi I
■ The connection equation implies thatΓα

βγ is the Levi-Cività of

hµν = Ω
(

gµν − Λ2
Λ1−Λ2

uµuν
)

, where

◆ Ω = [Λ1(Λ1−Λ2)]
1/2

◆ λ =

√

κ2P+ f
2 +

f 2
R

8 fQ

◆ Λ1 =
√

2 fQλ+ fR
2

◆ Λ2 =
√

2 fQ
[

λ±
√

λ2−κ2(ρ+P)
]
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◆ Λ1 =
√

2 fQλ+ fR
2

◆ Λ2 =
√

2 fQ
[

λ±
√

λ2−κ2(ρ+P)
]

■ In Bianchi I f (R,Q) spacetimes we find

◆ θ2 = 9H2 + 3
2

σ2

(1+ 3
2 ∆1)2

◆ H2 = 1
6(Λ1−Λ2)

[

f+κ2(ρ+3P)− 6KΛ1
a2

]

[1+ 3
2 ∆1]

2

◆ ∆1 = −(1+w)ρ∂ρΩ/Ω

◆ σ2 = ρ
2

1+w

(Λ1−Λ2)2
(C2

12+C2
23+C2

31)
3
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■ The bouncing conditionθ = 0 requires that(1+ 3
2∆1)

2 → ∞ .
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■ The bouncing conditionθ = 0 requires that(1+ 3
2∆1)

2 → ∞ .

■ For the model f (R,Q) = R+aR2

RP
+

R(µν)R(µν)

RP

◆ If (Λ1−Λ2) → 0 at someρB then isotropic bounce is possible.

◆ If Q = Qmax a regular isotropic and anisotropic bounce is possible.
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Dependence of the bounce on (a,w) in f (R,Q)
■ The classification of the bouncing solutions for

f (R,Q) = R+aR2

RP
+

RµνRµν

RP
is as follows:
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Dependence of the bounce on (a,w) in f (R,Q)
■ The classification of the bouncing solutions for

f (R,Q) = R+aR2

RP
+

RµνRµν

RP
is as follows:

■ If a > 0 the bounce occurs whenQ = Qmax . This is so because

∂ρΩ ∼ ∂ρλ ∼ ∂ρQ andQ contains a term of the form
√

Φ which vanishes

atQmax. The density at the maximum is given by

κ2ρQmax
RP

≡ 1+5w−2a(1−3w)−
√

8(1+w)(2w−a(1−3w))

(1+2a)2(1−3w)2

◆ The bounce occurs at that density ifw > a
2+3a
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Dependence of the bounce on (a,w) in f (R,Q)
■ The classification of the bouncing solutions for

f (R,Q) = R+aR2

RP
+

RµνRµν

RP
is as follows:

■ If a≤ 0 the bounce occurs at the following density:

κ2ρB
RP

=







1+6w−2a(1−3w)−3
√

w(2+3w)−a(1+w)(1−3w)

(1+a)(1+4a)(1−3w)2 if w≤ w0

κ2ρQmax
RP

if w≥ w0

◆ Note thatw0 is always negative.
◆ Forw≥ w0 the bounce is due to reachingQmax .

◆ Forw≤ w0 the bounce is due to the vanishing ofΛ1−Λ2 .
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Details of a≤ 0 isotropic bounces
■ How negative canw be extended beyond the matching pointw0?

■ If −1/4 < a≤ 0 restricted by the argument of the square root for

w≤ w0 ⇒ − 1
3 + 1

3

√

1+4a
1+a < w < ∞

■ If a = −1/4 the density at the bounce is given by

κ2ρB
RP

=











1
3(1+3w)

if w≤− 1
9

κ2ρQmax
RP

if w≥− 1
9

⇒ −1/3≤ w < ∞

■ If −1/3≤ a≤−1/4 Though here the square root is always real, we

find numerically that the bouncing solutions cannot be extended beyond

the valuew < −1, whereρB reaches a maximum⇒ −1 < w < ∞

■ If −1≤ a≤−1/3 here−1 < w also. We also find restrictions forw > 1

due to zeros in the denominator ofH2. ⇒ −1 < w < α+βa
(1+3a)2 > 1 ,

whereα = 1.1335 andβ = −3.3608.

■ If a≤−1 w depends on the square root⇒ −1 < w < a/(2+3a) .

Note that dust and radiation are always non-singular!!!
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Conclusions and Perspectives
■ Palatini theories have an extraordinary ability to avoid singularities

without the need for extra degrees of freedom:

◆ Using f (R) Lagrangians we reproduced the isotropicLQC dynamics.

◆ Other simple models,f (R) = R+R2/RP , also avoid the big bang.

f (R,Q) Lagrangians generate bouncing solutions in anisotropic scenarios

and for standard sources of matter and radiation,0≤ w≤ 1/3 !!!
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Conclusions and Perspectives
■ Palatini theories have an extraordinary ability to avoid singularities

without the need for extra degrees of freedom:

◆ Using f (R) Lagrangians we reproduced the isotropicLQC dynamics.

◆ Other simple models,f (R) = R+R2/RP , also avoid the big bang.

f (R,Q) Lagrangians generate bouncing solutions in anisotropic scenarios

and for standard sources of matter and radiation,0≤ w≤ 1/3 !!!

■ The independent connectionis fundamental toavoid new degrees of

freedomand yieldnon-linear matter contributionsthat generate the

bounce.
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Conclusions and Perspectives
■ Palatini theories have an extraordinary ability to avoid singularities

without the need for extra degrees of freedom:

◆ Using f (R) Lagrangians we reproduced the isotropicLQC dynamics.

◆ Other simple models,f (R) = R+R2/RP , also avoid the big bang.

f (R,Q) Lagrangians generate bouncing solutions in anisotropic scenarios

and for standard sources of matter and radiation,0≤ w≤ 1/3 !!!

■ The independent connection is fundamental toavoid new degrees of

freedomand yieldnon-linear matter contributionsthat generate the

bounce.

■ Natural future directions:

◆ Cosmology of other Bianchi models.
◆ Gravitational collapse and structure of compact objects inf (R,Q).
◆ Exploration of more general quadratic Lagrangians.
◆ Hamiltonian description of general Palatini theories.
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Thanks !!!
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