

Nonsingular Universes a là Palatini.

Gonzalo J. Olmo
Instituto de Física Corpuscular - CSIC (Valencia,Spain)

Motivation and Summary

- The Big Bang singularity is regarded as a problem that only a full quantum

Motivation and Summary

- The Big Bang singularity is regarded as a problem that only a full quantum theory of gravity can solve. But we do not have yet such a theory.

■ Phenomenological attempts to avoid singularities with effective theories generally require new degrees of freedom (non-local terms, extra fields, higher-order equations), which are excited and become important at increasing energies.

Motivation and Summary

- The Big Bang singularity is regarded as a problem that only a full quantum theory of gravity can solve. But we do not have yet such a theory.
- Phenomenological attempts to avoid singularities with effective theories generally require new degrees of freedom (non-local terms, extra fields, higher-order equations), which are excited and become important at increasing energies.
- Here we consider the following problem:

Can we construct a Lagrangian-based phenomenological theory of gravity free from singularities and as successful as GR at low energies without introducing extra fields or new degrees of freedom?

Motivation and Summary

- Motivation and Summary

LQC and bouncing $f(R)$ models Beyond isotropy in $f(R)$ models

Beyond $f(R)$

The End

- The Big Bang singularity is regarded as a problem that only a full quantum theory of gravity can solve. But we do not have yet such a theory.
- Phenomenological attempts to avoid singularities with effective theories generally require new degrees of freedom (non-local terms, extra fields, higher-order equations), which are excited and become important at increasing energies.
- Here we consider the following problem:

Can we construct a Lagrangian-based phenomenological theory of gravity free from singularities and as successful as GR at low energies without introducing extra fields or new degrees of freedom?

- A (Hamiltonian-based) example sharing this philosophy is provided by some toy models of canonical quantum gravity:
- The effective dynamics of Loop Quantum Cosmology replaces the Big Bang singularity by a cosmic bounce using second-order equations (like GR). The bounce is due to non-perturbative quantum effects.
- Lagrangians yielding similar dynamics could answer our question and establish a link with LQC and related approaches.

Motivation and Summary

- A partial answer to our question was found recently in the form of an $f(R)$ theory in Palatini formalism which could exactly reproduce the effective dynamics of isotropic LQC - olmo \& Sing (2009).

Motivation and Summary

- A partial answer to our question was found recently in the form of an $f(R)$ theory in Palatini formalism which could exactly reproduce the effective dynamics of isotropic LQC - Olmo \& Sing (2009).
- Besides the LQC Lagrangian, many other Palatini $f(R)$ theories yield non-singular isotropic cosmologies based purely on second-order equations - Baragagn, Olmo \& Sanchis-Alepuz (2009).

Motivation and Summary

- A partial answer to our question was found recently in the form of an $f(R)$ theory in Palatini formalism which could exactly reproduce the effective dynamics of isotropic LQC - Olmo \& Sing (2009).
- Besides the LQC Lagrangian, many other Palatini $f(R)$ theories yield non-singular isotropic cosmologies based purely on second-order equations - Baragagn,OImo \& Sanchis-Alepuz (2009).
- Since exact isotropy is a very strong idealization, here we consider the behavior of $f(R)$ and other Palatini theories in anisotropic scenarios.

Motivation and Summary

- A partial answer to our question was found recently in the form of an $f(R)$ theory in Palatini formalism which could exactly reproduce the effective dynamics of isotropic LQC - Olmo \& Sing (2009).
- Besides the LQC Lagrangian, many other Palatini $f(R)$ theories yield non-singular isotropic cosmologies based purely on second-order equations - Baragagn,OImo \& Sanchis-Alepuz (2009).
- Since exact isotropy is a very strong idealization, here we consider the behavior of $f(R)$ and other Palatini theories in anisotropic scenarios.
- We will see that:
- $f(R)$ models with isotropic bouncing solutions generically develop shear singularities in anisotropic scenarios.
- Completely regular isotropic and anisotropic bouncing solutions exist in $f(R, Q)$ models, where $Q \equiv R_{(\mu v)} R^{(\mu v)}$, thus providing a promising arena to build a non-singular theory of gravity.

LQC and other bouncing $f(R)$ models

Palatini $f(R)$ theories

- Action and field equations of Palatini $f(R)$ theories:
$S=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R)+S_{m}\left(g_{\mu \nu}, \psi\right)$, where $\left(g_{\mu \nu}, \Gamma_{\beta \gamma}^{\alpha}\right)$ are independent.
$f_{R} R_{\mu \nu}(\Gamma)-\frac{1}{2} g_{\mu \nu} f(R)=\kappa^{2} T_{\mu \nu} \quad$, where $f_{R} \equiv d f / d R$.
$\nabla_{\alpha}\left(\sqrt{-g} f_{R} g^{\beta \gamma}\right)=0 \Rightarrow \Gamma_{\beta \gamma}^{\alpha}=\frac{\alpha \rho}{2}\left[\partial_{\beta}^{f} \rho_{\gamma}+\partial_{\gamma_{\rho \beta}}-\partial_{\rho} \rho_{\beta \gamma}\right]$, where $t_{\mu \nu}=f_{R} g_{\mu \nu}$.

Palatini $f(R)$ theories

- Action and field equations of Palatini $f(R)$ theories:
$S=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R)+S_{m}\left(g_{\mu \nu}, \psi\right)$, where $\left(g_{\mu \nu}, \Gamma_{\beta \gamma}^{\alpha}\right)$ are independent.
$f_{R} R_{\mu \nu}(\Gamma)-\frac{1}{2} g_{\mu \nu} f(R)=\kappa^{2} T_{\mu \nu} \quad$, where $f_{R} \equiv d f / d R$.
$\nabla_{\alpha}\left(\sqrt{-g} f_{R} g^{\beta \gamma}\right)=0 \Rightarrow \Gamma_{\beta \gamma}^{\alpha}=\frac{\alpha \rho}{2}\left[\partial_{\left.\beta^{t} \rho \gamma+\partial_{\gamma_{\rho \beta}}-\partial_{\rho} \rho_{\beta \gamma}\right]}\right.$, where $t_{\mu \nu}=f_{R} g_{\mu \nu}$.
- Trace Equation: $R f_{R}-2 f=\kappa^{2} T \Rightarrow R=\mathcal{R}(T)$

Palatini $f(R)$ theories

- Action and field equations of Palatini $f(R)$ theories:
$S=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R)+S_{m}\left(g_{\mu \nu}, \psi\right)$, where $\left(g_{\mu \nu}, \Gamma_{\beta \gamma}^{\alpha}\right)$ are independent.
$f_{R} R_{\mu \nu}(\Gamma)-\frac{1}{2} g_{\mu \nu} f(R)=\kappa^{2} T_{\mu \nu} \quad$, where $f_{R} \equiv d f / d R$.
$\nabla_{\alpha}\left(\sqrt{-g} f_{R} g^{\beta \gamma}\right)=0 \Rightarrow \Gamma_{\beta \gamma}^{\alpha}=\frac{\alpha \rho}{2}\left[\partial_{\left.\beta^{\prime} \rho \gamma+\gamma^{t} \rho_{\beta \beta}-\partial_{\rho} \rho_{\beta \gamma}\right]}\right.$, where $t_{\mu \nu}=f_{R} g_{\mu \nu}$.
- Trace Equation: $R f_{R}-2 f=\kappa^{2} T \Rightarrow R=\mathcal{R}(T)$
- Resulting equations for the metric $g_{\mu v}$:

$$
G_{\mu v}(g)=\frac{\kappa^{2}}{f_{R}} T_{\mu v}-\frac{R f_{R}-f}{2 f_{R}} g_{\mu v}-\frac{3}{2 f_{R}^{2}}\left(\partial_{\mu} f_{R} \partial_{v} f_{R}-\frac{1}{2} g_{\mu v}\left(\partial f_{R}\right)^{2}\right)+\frac{1}{f_{R}}\left(\nabla_{\mu} \nabla_{v} f_{R}-g_{\mu v} \square f_{R}\right)
$$

In short: $G_{\mu v}(g)=\frac{\mathrm{K}^{2}}{f_{R}} T_{\mu \nu}+\tau_{\mu v}(T)$

Palatini $f(R)$ theories

- Motivation and Summary - Motivation and Summary
- Action and field equations of Palatini $f(R)$ theories:
$S=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R)+S_{m}\left(g_{\mu \nu}, \psi\right)$, where $\left(g_{\mu \nu}, \Gamma_{\beta \gamma}^{\alpha}\right)$ are independent.
$f_{R} R_{\mu v}(\Gamma)-\frac{1}{2} g_{\mu v} f(R)=\kappa^{2} T_{\mu v} \quad$, where $f_{R} \equiv d f / d R$.
$\nabla_{\alpha}\left(\sqrt{-g} f_{R} g^{\beta \gamma}\right)=0 \Rightarrow \Gamma_{\beta \gamma}^{\alpha}=\frac{\alpha \rho}{2}\left[\partial_{\left.\beta^{\prime} \rho \gamma+\gamma^{t} \rho_{\beta \beta}-\partial_{\rho} \rho_{\beta \gamma}\right]}\right.$, where $t_{\mu \nu}=f_{R} g_{\mu \nu}$.
- Trace Equation: $R f_{R}-2 f=\kappa^{2} T \Rightarrow R=\mathcal{R}(T)$
- Resulting equations for the metric $g_{\mu v}$:

$$
G_{\mu v}(g)=\frac{\kappa^{2}}{f_{R}} T_{\mu v}-\frac{R f_{R}-f}{2 f_{R}} g_{\mu v}-\frac{3}{2 f_{R}^{2}}\left(\partial_{\mu} f_{R} \partial_{v} f_{R}-\frac{1}{2} g_{\mu v}\left(\partial f_{R}\right)^{2}\right)+\frac{1}{f_{R}}\left(\nabla_{\mu} \nabla_{v} f_{R}-g_{\mu v} \square f_{R}\right)
$$

In short: $G_{\mu v}(g)=\frac{\mathrm{K}^{2}}{f_{R}} T_{\mu \nu}+\tau_{\mu v}(T)$
\square Note that in vacuum: $G_{\mu v}(g)=-\Lambda_{e f f} g_{\mu \nu}$, with $\left.\Lambda_{e f f} \equiv \frac{\mathcal{R} f_{R}-f}{2 f_{\mathcal{R}}}\right|_{\mathcal{R} \rightarrow \mathcal{R} 0}$.

Palatini $f(R)$ theories

- Motivation and Summary - Motivation and Summary
- Action and field equations of Palatini $f(R)$ theories:
$S=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R)+S_{m}\left(g_{\mu v}, \psi\right)$, where $\left(g_{\mu \nu}, \Gamma_{\beta \gamma}^{\alpha}\right)$ are independent.
$f_{R} R_{\mu v}(\Gamma)-\frac{1}{2} g_{\mu v} f(R)=\kappa^{2} T_{\mu v} \quad$, where $f_{R} \equiv d f / d R$.
$\nabla_{\alpha}\left(\sqrt{-g} f_{R} g^{\beta \gamma}\right)=0 \Rightarrow \Gamma_{\beta \gamma}^{\alpha}=\frac{\alpha \rho}{2}\left[\partial_{\left.\beta^{\prime} \rho \gamma+\gamma^{t} \rho_{\beta \beta}-\partial_{\rho} \rho_{\beta \gamma}\right]}\right.$, where $t_{\mu \nu}=f_{R} g_{\mu \nu}$.
- Trace Equation: $R f_{R}-2 f=\kappa^{2} T \Rightarrow R=\mathcal{R}(T)$
- Resulting equations for the metric $g_{\mu v}$:
$G_{\mu v}(g)=\frac{\kappa^{2}}{f_{R}} T_{\mu \nu}-\frac{\kappa f_{R}-f}{2 f_{R}} g_{\mu \nu}-\frac{3}{2 f_{R}^{2}}\left(\partial_{\mu} f_{R} \partial_{\nu} f_{R}-\frac{1}{2} g_{\mu v}\left(\partial f_{R}\right)^{2}\right)+\frac{1}{f_{R}}\left(\nabla_{\mu} \nabla_{v} f_{R}-g_{\mu v} \square f_{R}\right)$

In short: $G_{\mu v}(g)=\frac{\kappa^{2}}{f_{R}} T_{\mu \nu}+\tau_{\mu v}(T)$
■ Note that in vacuum: $G_{\mu v}(g)=-\Lambda_{e f f} g_{\mu \nu}$, with $\left.\Lambda_{e f f} \equiv \frac{\mathcal{R} f_{R}-f}{2 f_{\mathcal{R}}}\right|_{\mathcal{R} \rightarrow \mathcal{R} 0}$.
Palatini $f(R)$ looks like GR with a modified source !!!

Finding the LQC effective action

■ In a FRW Universe $d s^{2}=-d t^{2}+a^{2}(t) d \vec{x}^{2}$. In GR $3(\dot{a} / a)^{2}=\kappa^{2} \rho$

- For a massless scalar, the Hubble function $H=\dot{a} / a$ is given by
- In LQC: $\quad 3 H^{2}=8 \pi G \rho\left(1-\frac{\rho}{\rho_{\text {crit }}}\right)$, with $\rho_{\text {crit }}=0.41 \rho_{\text {Planck }}$.
- In Palatini $f(R): 3 H^{2}=\frac{f_{R}\left(\kappa^{2} \rho+\left(R f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R R}}{2\left(R f_{R R}-f_{R}\right)}\right)^{2}}$.

Finding the LQC effective action

■ In a FRW Universe $d s^{2}=-d t^{2}+a^{2}(t) d \vec{x}^{2}$. In GR $3(\dot{a} / a)^{2}=\kappa^{2} \rho$

- For a massless scalar, the Hubble function $H=\dot{a} / a$ is given by
- In LQC: $\quad 3 H^{2}=8 \pi G \rho\left(1-\frac{\rho}{\rho_{\text {crit }}}\right)$, with $\rho_{\text {crit }}=0.41 \rho_{\text {Planck }}$.
- In Palatini $f(R): 3 H^{2}=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R}}{2\left(R f_{R R}-f_{R}\right)}\right)^{2}}$.
- The trace Equation, $R f_{R}-2 f=2 \kappa^{2} \rho$, implies $\Rightarrow \rho=\rho(\mathcal{R})$

Finding the LQC effective action

■ In a FRW Universe $d s^{2}=-d t^{2}+a^{2}(t) d \vec{x}^{2}$. In GR $3(\dot{a} / a)^{2}=\kappa^{2} \rho$

- For a massless scalar, the Hubble function $H=\dot{a} / a$ is given by
- In LQC: $\quad 3 H^{2}=8 \pi G \rho\left(1-\frac{\rho}{\rho_{\text {crit }}}\right)$, with $\rho_{\text {crit }}=0.41 \rho_{\text {Planck }}$.
- In Palatini $f(R): 3 H^{2}=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R}}{2\left(R f_{R R}-f_{R}\right)}\right)^{2}}$.
- The trace Equation, $R f_{R}-2 f=2 \kappa^{2} \rho$, implies $\Rightarrow \rho=\rho(\mathcal{R})$

Equating the R.H.S. of these equations: $8 \pi G \rho\left(1-\frac{\rho}{\rho_{c r i t}}\right)=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R R}}{2\left(\mathcal{R} f_{R R}-f_{R}\right)}\right)^{2}}$

Finding the LQC effective action

■ In a FRW Universe $d s^{2}=-d t^{2}+a^{2}(t) d \vec{x}^{2}$. In GR $3(\dot{a} / a)^{2}=\kappa^{2} \rho$

- For a massless scalar, the Hubble function $H=\dot{a} / a$ is given by
- In LQC: $\quad 3 H^{2}=8 \pi G \rho\left(1-\frac{\rho}{\rho_{\text {crit }}}\right)$, with $\rho_{\text {crit }}=0.41 \rho_{\text {Planck }}$.
- In Palatini $f(R): 3 H^{2}=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R R}}{2\left(\mathcal{R} f_{R R}-f_{R}\right)}\right)^{2}}$.

■ The trace Equation, $R f_{R}-2 f=2 \kappa^{2} \rho$, implies $\Rightarrow \rho=\rho(\mathcal{R})$
Equating the R.H.S. of these equations: $8 \pi G \rho\left(1-\frac{\rho}{\rho_{c r i t}}\right)=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R R}}{2\left(\mathcal{R} f_{R R}-f_{R}\right)}\right)^{2}}$
\square We find the following o.d.e.: $f_{R R}=-f_{R}\left(\frac{A f_{R}-B}{2\left(\mathcal{R} f_{R}-3 f\right) A+\mathcal{R} B}\right)$,
where $A=\sqrt{2\left(\mathcal{R} f_{R}-2 f\right)\left(2 \mathcal{R}_{c}-\left[\mathcal{R} f_{R}-2 f\right]\right)}$,

$$
B=2 \sqrt{\mathcal{R}_{c} f_{R}\left(2 \mathcal{R}_{c} f_{R}-3 f\right)}, \text { and } \mathcal{R}_{c} \equiv \kappa^{2} \rho_{c} .
$$

Finding the LQC effective action

■ In a FRW Universe $d s^{2}=-d t^{2}+a^{2}(t) d \vec{x}^{2}$. In GR $3(\dot{a} / a)^{2}=\kappa^{2} \rho$

- For a massless scalar, the Hubble function $H=\dot{a} / a$ is given by
- In LQC: $\quad 3 H^{2}=8 \pi G \rho\left(1-\frac{\rho}{\rho_{\text {crit }}}\right)$, with $\rho_{\text {crit }}=0.41 \rho_{\text {Planck }}$.
- In Palatini $f(R): 3 H^{2}=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R}}{2\left(\mathcal{R} f_{R R}-f_{R}\right)}\right)^{2}}$.
- The trace Equation, $R f_{R}-2 f=2 \kappa^{2} \rho$, implies $\Rightarrow \rho=\rho(\mathcal{R})$

Equating the R.H.S. of these equations: $8 \pi G \rho\left(1-\frac{\rho}{\rho_{c r i t}}\right)=\frac{f_{R}\left(\kappa^{2} \rho+\left(\mathcal{R} f_{R}-f\right) / 2\right)}{\left(f_{R}-\frac{12 \kappa^{2} \rho f_{R R}}{2\left(\mathcal{R} f_{R R}-f_{R}\right)}\right)^{2}}$
\square We find the following o.d.e.: $f_{R R}=-f_{R}\left(\frac{A f_{R}-B}{2\left(\mathcal{R} f_{R}-3 f\right) A+\mathcal{R} B}\right)$,
where $A=\sqrt{2\left(\mathcal{R} f_{R}-2 f\right)\left(2 \mathcal{R}_{c}-\left[\mathcal{R} f_{R}-2 f\right]\right)}$,

$$
B=2 \sqrt{\mathcal{R}_{c} f_{R}\left(2 \mathcal{R}_{c} f_{R}-3 f\right)}, \text { and } \mathcal{R}_{c} \equiv \kappa^{2} \rho_{c} .
$$

This leads to a unique solution with $f_{R} \rightarrow 1$ when $R \rightarrow 0$ satisfying

$$
\ddot{a}_{L Q C}=\ddot{a}_{P a l} \text { at } \rho=\rho_{c}-\text { Olmo \& Sing (2009). }
$$

Other nonsingular $f(R)$ models

- The LQC Lagrangian is not the only $f(R)$ model that avoids the Big Bang singularity. The simple model $f(R)=R+a \frac{R^{2}}{R_{P}}$ can also do the job:

$$
\mathrm{f}(\mathrm{R})=\mathrm{R}-\frac{R^{2}}{2 R_{P}}, \omega=0
$$

Beyond $f(R)$

- The Hubble function begins growing linearly, then reaches a maximum and drops to zero at high energies producing a cosmic bounce.

Other nonsingular $f(R)$ models

- The LQC Lagrangian is not the only $f(R)$ model that avoids the Big Bang singularity. The simple model $f(R)=R+a \frac{R^{2}}{R_{P}}$ can also do the job:

$$
\mathrm{GR}-\mathrm{Vs}-\mathrm{f}(\mathrm{R})=\mathrm{R}-\frac{R^{2}}{2 R_{p}}
$$

- Starting with a contracting phase, the expansion factors reach a minimum and bounce to our expanding universe.

Characterizing the $f(R)$ Bounce.

For a general $f(R)$ theory, the Hubble function is given by ($P=w \rho$)

$$
H^{2}=\frac{1}{6 f_{R}} \frac{\left[f+\mathrm{\kappa}^{2}(\rho+3 P)-\frac{6 K f_{R}}{a^{2}}\right]}{\left[1+\frac{3}{2} \tilde{\Delta}_{1}\right]^{2}} \text { where } \tilde{\Delta}_{1}=-(1+w) \rho\left(\partial_{\rho} f_{R}\right) / f_{R} .
$$

Characterizing the $f(R)$ Bounce.

- For a general $f(R)$ theory, the Hubble function is given by ($P=w \rho$)

$$
H^{2}=\frac{1}{6 f_{R}} \frac{\left[f+\mathrm{K}^{2}(\rho+3 P)-\frac{6 f_{R}}{a^{2}}\right]}{\left[1+\frac{3}{2} \tilde{\Delta}_{1}\right]^{2}} \text { where } \tilde{\Delta}_{1}=-(1+w) \rho\left(\partial_{\rho} f_{R}\right) / f_{R} .
$$

- A cosmic bounce occurs whenever $H^{2}=0$, which may happen if:
- $\mathrm{I}: f_{R}\left(R f_{R R}-f_{R}\right)=0$ because $\tilde{\Delta}_{1}=\frac{(1+w)(1-3 w) \kappa^{2} \rho f_{R R}}{f_{R}\left(R f_{R R}-f_{R}\right)}$.
- II: $f+\kappa^{2}(\rho+3 P)-6 K f_{R} / a^{2}=0$.

Characterizing the $f(R)$ Bounce.

- For a general $f(R)$ theory, the Hubble function is given by ($P=w \rho$)

$$
H^{2}=\frac{1}{6 f_{R}} \frac{\left[f+\kappa^{2}(\rho+3 P)-\frac{6 K f_{R}}{a^{2}}\right]}{\left[1+\frac{3}{2} \tilde{\Delta}_{1}\right]^{2}} \text { where } \tilde{\Delta}_{1}=-(1+w) \rho\left(\partial_{\rho} f_{R}\right) / f_{R}
$$

- A cosmic bounce occurs whenever $H^{2}=0$, which may happen if:
- $\mathrm{I}: f_{R}\left(R f_{R R}-f_{R}\right)=0$ because $\tilde{\Delta}_{1}=\frac{(1+w)(1-3 w) \kappa^{2} \rho f_{R R}}{f_{R}\left(R f_{R R}-f_{R}\right)}$.
- II: $f+\kappa^{2}(\rho+3 P)-6 K f_{R} / a^{2}=0$.
- If $f(R) \approx R$ at low energies, only $f_{R}=0$ occurs. - Barragán \& olmo (2010)
- Assuming $g_{g(R)=2\left(1+\frac{3}{2} \bar{\Delta}_{1}\right)}=\frac{\left(f_{R R}\left[6(1+w) f-(1+3 w) f_{R}\right]-f_{R}^{2}\right)}{f_{R}\left(R f_{R R}-f_{R}\right)}$ such that $g(R) \approx 1$ at low R but diverges at R_{P}, and denoting $f=R_{0} e^{\lambda(R)}$, we find

$$
\frac{\lambda_{R R}+\lambda_{R}^{2}}{\lambda_{R}^{2}}=\frac{[2-g(R)]}{6(1+w)-[1+3 w+g(R)] R \lambda_{R}}
$$

- Since $R \lambda_{R}>0$, the denominator may vanish as $g(R)$ grows. A true bounce can only happen when $g(R) \rightarrow \infty$, but that requires that $g(R) \lambda_{R}$ be finite to exactly cancel out with the other terms. Since this can only happen if $\lambda_{R}=0=f_{R}$, the condition $R f_{R R}-f_{R}$ is excluded.

Beyond isotropy in $f(R)$ models

Anisotropies in $f(R)$: the end of a dream.

- Consider a Bianchi I universe: $d s^{2}=-d t^{2}+\sum_{i} a_{i}^{2}\left(d x^{i}\right)^{2}$

Anisotropies in $f(R)$: the end of a dream.

- Consider a Bianchi I universe: $d s^{2}=-d t^{2}+\sum_{i} a_{i}^{2}\left(d x^{i}\right)^{2}$
- Magnitudes of interest: $\left(H_{i}=\frac{\dot{a}_{i}}{a_{i}}\right)$
- Expansion: $\theta=\sum_{i} H_{i} \Rightarrow \theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \tilde{\Delta}_{1}\right)^{2}}$
- Shear: $\sigma^{2}=\sum_{i}\left(H_{i}-\frac{\theta}{3}\right)^{2} \Rightarrow \sigma^{2}=\frac{\rho^{\frac{2}{1+w}}}{f_{R}^{2}} \frac{\left(C_{12}^{2}+C_{23}^{2}+C_{31}^{2}\right)}{3}$ where $C_{12}+C_{23}+C_{31}=0$.
- Conservation equation: $\dot{\rho}=-\theta(\rho+P)$

Anisotropies in $f(R)$: the end of a dream.

- Consider a Bianchi I universe: $d s^{2}=-d t^{2}+\sum_{i} a_{i}^{2}\left(d x^{i}\right)^{2}$

■ Magnitudes of interest: $\left(H_{i}=\frac{\dot{a}_{i}}{a_{i}}\right)$

- Expansion: $\theta=\sum_{i} H_{i} \Rightarrow \theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \tilde{\Delta}_{1}\right)^{2}}$
- Shear: $\sigma^{2}=\sum_{i}\left(H_{i}-\frac{\theta}{3}\right)^{2} \Rightarrow \sigma^{2}=\frac{\rho^{\frac{2}{1+w}}}{f_{R}^{2}} \frac{\left(C_{12}^{2}+C_{33}^{2}+C_{31}^{2}\right)}{3}$ where $C_{12}+C_{23}+C_{31}=0$.
- Conservation equation: $\dot{\rho}=-\theta(\rho+P)$
- Anisotropic bouncing cosmologies require $\theta=0$. Therefore, H^{2} and $\sigma^{2} /\left(1+3 \Delta_{1} / 2\right)^{2}$ must vanish simultaneously. However,

Since H^{2} can only vanish when $f_{R}=0$ and that implies a divergence of $\sigma^{2} \sim 1 / f_{R}^{2}$, Palatini $f(R)$ models turn out to be unstable under anisotropic perturbations.

Anisotropies in $f(R)$: the end of a dream.

- Consider a Bianchi I universe: $d s^{2}=-d t^{2}+\sum_{i} a_{i}^{2}\left(d x^{i}\right)^{2}$

■ Magnitudes of interest: $\left(H_{i}=\frac{\dot{a}_{i}}{a_{i}}\right)$

- Expansion: $\theta=\sum_{i} H_{i} \Rightarrow \theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \bar{\Delta}_{1}\right)^{2}}$
- Shear: $\sigma^{2}=\sum_{i}\left(H_{i}-\frac{\theta}{3}\right)^{2} \Rightarrow \sigma^{2}=\frac{\rho^{\frac{2}{1+w}}}{f_{R}^{2}} \frac{\left(C_{12}^{2}+C_{23}^{2}+C_{31}^{2}\right)}{3}$ where $C_{12}+C_{23}+C_{31}=0$.
- Conservation equation: $\dot{\rho}=-\theta(\rho+P)$

■ Anisotropic bouncing cosmologies require $\theta=0$. Therefore, H^{2} and $\sigma^{2} /\left(1+3 \Delta_{1} / 2\right)^{2}$ must vanish simultaneously. However,

Since H^{2} can only vanish when $f_{R}=0$ and that implies a divergence of $\sigma^{2} \sim 1 / f_{R}^{2}$, Palatini $f(R)$ models turn out to be unstable under anisotropic perturbations.

- Note that $R_{\mu v \sigma \rho} R^{\mu v \sigma \rho} \sim 1 / f_{R}^{4}$ confirms that the divergence of σ^{2} is a true geometrical singularity.

Beyond $f(R)$

From $f(R)$ to $f(R Q)$

- Solvable models
- Details of $f(R Q)$
- Isotropic bounce in $f(R Q)$
- Details of $a \leq 0$
- Conclusions

The End

Beyond $f(R)$

From $f(R)$ to $f(R, Q)$

- Palatini $f(R)$ theories greatly improved the situation of the isotropic
- Motivation and Summary - Motivation and Summary LQC and bouncing $f(R)$ models

Beyond isotropy in $f(R)$ models

Beyond $f(R$

OFrom $f(R)$ to $f(R Q)$

From $f(R)$ to $f(R, Q)$

- Palatini $f(R)$ theories greatly improved the situation of the isotropic scenario as compared to GR.
- Our studies have led us to the limits of $f(R)$: they are not the final answer.

From $f(R)$ to $f(R, Q)$

- Palatini $f(R)$ theories greatly improved the situation of the isotropic scenario as compared to GR.
- Our studies have led us to the limits of $f(R)$: they are not the final answer.
- A natural next step is to explore Palatini theories with other curvature invariants. To avoid the appearance of new degrees of freedom, we restrict ourselves to theories of the form $f(R, Q)$, with $Q \equiv R_{(\mu v)} R^{(\mu v)}$ Olmo, Sanchis-Alepuz, \& Tripathi (2009) ; Vitagliano, Sotiriou, \& Liberati (2010) .

From $f(R)$ to $f(R, Q)$

- Palatini $f(R)$ theories greatly improved the situation of the isotropic scenario as compared to GR.
- Our studies have led us to the limits of $f(R)$: they are not the final answer.
- A natural next step is to explore Palatini theories with other curvature invariants. To avoid the appearance of new degrees of freedom, we restrict ourselves to theories of the form $f(R, Q)$, with $Q \equiv R_{(\mu v)} R^{(\mu v)}$ Olmo, Sanchis-Alepuz, \& Tripathi (2009) ; Vitagliano, Sotiriou, \& Liberati (2010) •
- In such theories the indep. connection is the Levi-Civita of $h_{\mu v}=\Omega\left(g_{\mu v}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right)$, where $\Omega=\sqrt{\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)}$, $\Lambda_{1}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2}, \quad \Lambda_{2}=\sqrt{2 f_{Q}}\left(\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right)$, and $\lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}}$

From $f(R)$ to $f(R, Q)$

- Palatini $f(R)$ theories greatly improved the situation of the isotropic scenario as compared to GR.
- Our studies have led us to the limits of $f(R)$: they are not the final answer.
- A natural next step is to explore Palatini theories with other curvature invariants. To avoid the appearance of new degrees of freedom, we restrict ourselves to theories of the form $f(R, Q)$, with $Q \equiv R_{(\mu v)} R^{(\mu v)}$ Olmo, Sanchis-Alepuz, \& Tripathi (2009) ; Vitagliano, Sotiriou, \& Liberati (2010) •
- In such theories the indep. connection is the Levi-Civita of $h_{\mu \nu}=\Omega\left(g_{\mu \nu}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right)$, where $\Omega=\sqrt{\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)}$, $\Lambda_{1}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2}, \quad \Lambda_{2}=\sqrt{2 f_{Q}}\left(\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right)$, and $\lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}}$

■ We also find that $R=R(\rho, P), Q=Q(\rho, P)$, which implies a phenomenology much richer than that of $f(R)$ theories.

Explicitly solvable $f(R, Q)$ models

- For physical applications, we need solvable models: $R(\rho, P), Q(\rho, P)$.

Explicitly solvable $f(R, Q)$ models

- For physical applications, we need solvable models: $R(\rho, P), Q(\rho, P)$.
- Motivation and Summary - Motivation and Summary LQC and bouncing $f(R)$ models

Beyond isotropy in $f(R)$ models

Explicitly solvable $f(R, Q)$ models

- For physical applications, we need solvable models: $R(\rho, P), Q(\rho, P)$.
- Motivation and Summary - Motivation and Summary LQC and bouncing $f(R)$ models
- Simplest solvable models: $f(R, Q)=\tilde{f}(R)+\frac{R_{(\mu v} R^{(\mu \nu)}}{R_{P}}$
- Trace equation $2 Q f_{Q}+R f_{R}-2 f=\kappa^{2} T \Rightarrow R \tilde{f}_{R}-2 \tilde{f}=\kappa^{2} T \Rightarrow R=R(T)$.
- Trace of $\left.\sqrt{2 f_{Q} \hat{M}}: \frac{Q}{2 R_{P}}=-\left(\mathrm{k}^{2} P+\frac{\tilde{f}_{2}}{2}+\frac{R_{P}}{8} f_{R}^{2}\right)+\frac{R_{P}}{32}\left[3\left(\frac{R}{R_{P}}+\tilde{f}_{R}\right) \pm \sqrt{\left(\frac{R}{R_{P}}+\tilde{f}_{R}\right.}\right)^{2}-\frac{4 \mathrm{k}^{2}(\rho+P)}{R_{P}}\right]^{2}$

■ Example: $f(R, Q)=R+a \frac{R^{2}}{R_{P}}+\frac{R_{(\alpha v)} R^{(\mu \nu)}}{R_{P}}$ with $a=-1 / 2$ and $R=-\kappa^{2} T$

$$
Q=\frac{3 R_{P}^{2}}{8}\left[1-\frac{2 \mathrm{\kappa}^{2}(\rho+P)}{R_{P}}+\frac{2 \mathrm{\kappa}^{4}(\rho-3 P)^{2}}{3 R_{P}^{2}}-\sqrt{1-\frac{4 \mathrm{\kappa}^{2}(\rho+P)}{R_{P}}}\right]
$$

Expanding: $Q \approx \kappa^{4}\left(3 P^{2}+\rho^{2}\right)+\frac{3 \kappa^{6}(P+\rho)^{3}}{2 R_{P}}+\frac{15 \kappa^{8}(P+\rho)^{4}}{4 R_{P}^{2}}+\ldots$

Explicitly solvable $f(R, Q)$ models

■ For physical applications, we need solvable models: $R(\rho, P), Q(\rho, P)$.

- Simplest solvable models: $f(R, Q)=\tilde{f}(R)+\frac{R_{(\mu v)} R^{(\mu \nu)}}{R_{P}}$
- Trace equation $2 Q f_{Q}+R f_{R}-2 f=\kappa^{2} T \Rightarrow R \tilde{f}_{R}-2 \tilde{f}=\kappa^{2} T \Rightarrow R=R(T)$.
- Trace of $\left.\sqrt{2 f_{Q} \hat{M}}: \frac{Q}{2 R_{P}}=-\left(\mathrm{k}^{2} P+\frac{\tilde{f}_{2}}{2}+\frac{R_{P}}{8} f_{R}^{2}\right)+\frac{R_{P}}{32}\left[3\left(\frac{R}{R_{P}}+\tilde{f}_{R}\right) \pm \sqrt{\left(\frac{R}{R_{P}}+\tilde{f}_{R}\right.}\right)^{2}-\frac{4 \mathrm{k}^{2}(\rho+P)}{R_{P}}\right]^{2}$

■ Example: $f(R, Q)=R+a \frac{R^{2}}{R_{P}}+\frac{R_{(\alpha v)} R^{(\mu \nu)}}{R_{P}}$ with $a=-1 / 2$ and $R=-\kappa^{2} T$

$$
Q=\frac{3 R_{P}^{2}}{8}\left[1-\frac{2 \mathrm{~K}^{2}(\rho+P)}{R_{P}}+\frac{2 \mathrm{\kappa}^{4}(\rho-3 P)^{2}}{3 R_{P}^{2}}-\sqrt{1-\frac{4 \mathrm{~K}^{2}(\rho+P)}{R_{P}}}\right]
$$

Expanding: $Q \approx \kappa^{4}\left(3 P^{2}+\rho^{2}\right)+\frac{3 \kappa^{6}(P+\rho)^{3}}{2 R_{P}}+\frac{15 \kappa^{8}(P+\rho)^{4}}{4 R_{P}^{2}}+\ldots$

- ρ and P are bounded from above: $1-\frac{4 \mathrm{k}^{2}(\rho+P)}{R_{P}} \geq 0$

We expect important changes in the dynamics at high curvatures (Big Bang, Black Holes,...).

Details of $f(R, Q)$ in FRW and Bianchi I

- The connection equation implies that $\Gamma_{\beta \gamma}^{\alpha}$ is the Levi-Cività of

$$
h_{\mu \nu}=\Omega\left(g_{\mu \nu}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{\nu}\right), \text { where }
$$

- $\Omega=\left[\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)\right]^{1 / 2}$
- $\Lambda_{1}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2}$
- $\lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}} \quad \bullet \Lambda_{2}=\sqrt{2 f_{Q}}\left[\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right]$

Details of $f(R, Q)$ in FRW and Bianchi I

- The connection equation implies that $\Gamma_{\beta \gamma}^{\alpha}$ is the Levi-Cività of

$$
\begin{array}{rll}
h_{\mu v}=\Omega\left(g_{\mu v}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right) & \text {, where } \\
& \Omega=\left[\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)\right]^{1 / 2} & \bullet \\
& \lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}} \quad \bullet \quad \Lambda_{2}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2} \\
& & \Lambda_{2}\left[\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right]
\end{array}
$$

- $\Delta_{1}=-(1+w) \rho \partial_{\rho} \Omega / \Omega$
$\begin{aligned} \theta^{2} & =9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \Delta_{1}\right)^{2}} \\ \text { - } H^{2} & =\frac{1}{6\left(\Lambda_{1}-\Lambda_{2}\right)} \frac{\left[f+\mathrm{K}^{2}(\rho+3 P)-\frac{6 K \Lambda_{1}}{a^{2}}\right]}{\left[1+\frac{3}{2} \Delta_{1}\right]^{2}}\end{aligned}$

Details of $f(R, Q)$ in FRW and Bianchi I

- The connection equation implies that $\Gamma_{\beta \gamma}^{\alpha}$ is the Levi-Cività of

$$
\begin{aligned}
h_{\mu v}=\Omega\left(g_{\mu v}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right) & \text {, where } \\
& \Omega=\left[\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)\right]^{1 / 2}
\end{aligned} \quad \begin{aligned}
& \Lambda_{1}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2} \\
& \\
& \\
& \lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}} \quad \bullet \Lambda_{2}=\sqrt{2 f_{Q}}\left[\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right]
\end{aligned}
$$

- In Bianchi $\operatorname{I} f(R)$ spacetimes we find
- $\theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \tilde{\Delta}_{1}\right)^{2}}$
- $H^{2}=\frac{1}{6 f_{R}} \frac{\left[f+\kappa^{2}(\rho+3 P)-\frac{6 K f_{R}}{a^{2}}\right]}{\left[1+\frac{3}{2} \tilde{\Lambda}_{1}\right]^{2}}$
- $\tilde{\Delta}_{1}=-(1+w) \rho \partial_{\rho} f_{R} / f_{R}$
- $\sigma^{2}=\frac{\rho^{\frac{2}{1+w}}}{f_{R}^{2}} \frac{\left(C_{12}^{2}+C_{23}^{2}+C_{31}^{2}\right)}{3}$

Details of $f(R, Q)$ in FRW and Bianchi I

- The connection equation implies that $\Gamma_{\beta \gamma}^{\alpha}$ is the Levi-Cività of

$$
\begin{array}{rll}
h_{\mu v}=\Omega\left(g_{\mu v}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right) & \text {, where } \\
& \Omega=\left[\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)\right]^{1 / 2} & \bullet \\
& \lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}} \quad \bullet \quad \Lambda_{2}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2} \\
& & \Lambda_{2}\left[\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right]
\end{array}
$$

Beyond $f(R)$

- From $f(R)$ to $f(R Q)$
- $\Delta_{1}=-(1+w) \rho \partial_{\rho} \Omega / \Omega$
$\theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \tilde{1}_{1}\right)^{2}}$
- $H^{2}=\frac{1}{6\left(\Lambda_{1}-\Lambda_{2}\right)} \frac{\left[f+\mathrm{K}^{2}(\rho+3 P)-\frac{6 K \Lambda_{1}}{a^{2}}\right]}{\left[1+\frac{3}{2} \Delta_{1}\right]^{2}}$
- $\sigma^{2}=\frac{\rho^{\frac{2}{1+w}}}{\left(\Lambda_{1}-\Lambda_{2}\right)^{2}} \frac{\left(C_{12}^{2}+C_{23}^{2}+C_{31}^{2}\right)}{3}$

Details of $f(R, Q)$ in FRW and Bianchi I

- The connection equation implies that $\Gamma_{\beta \gamma}^{\alpha}$ is the Levi-Cività of

$$
\begin{array}{rll}
h_{\mu v}=\Omega\left(g_{\mu \nu}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right) & \text {, where } \\
& \Omega=\left[\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)\right]^{1 / 2} & \Lambda_{1}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2} \\
& \lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}} \quad \bullet & \Lambda_{2}=\sqrt{2 f_{Q}}\left[\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right]
\end{array}
$$

- In Bianchi $\operatorname{I} f(R, Q)$ spacetimes we find
- $\theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \tilde{\Delta}_{4}\right)^{2}}$
- $\Delta_{1}=-(1+w) \rho \partial_{\rho} \Omega / \Omega$
- $H^{2}=\frac{1}{6\left(\Lambda_{1}-\Lambda_{2}\right)} \frac{\left[f+\mathrm{K}^{2}(\rho+3 P)-\frac{6 K \Lambda_{1}}{a^{2}}\right]}{\left[1+\frac{3}{2} \Delta_{1}\right]^{2}}$
- $\sigma^{2}=\frac{\rho^{\frac{2}{1}+w}}{\left(\Lambda_{1}-\Lambda_{2}\right)^{2}} \frac{\left(C_{12}^{2}+C_{23}^{2}+C_{31}^{2}\right)}{3}$
- The bouncing condition $\theta=0$ requires that $\left(1+\frac{3}{2} \Delta_{1}\right)^{2} \rightarrow \infty$.

Details of $f(R, Q)$ in FRW and Bianchi I

- The connection equation implies that $\Gamma_{\beta \gamma}^{\alpha}$ is the Levi-Cività of

$$
\begin{aligned}
& h_{\mu v}=\Omega\left(g_{\mu v}-\frac{\Lambda_{2}}{\Lambda_{1}-\Lambda_{2}} u_{\mu} u_{v}\right), \text { where } \\
& \Omega=\left[\Lambda_{1}\left(\Lambda_{1}-\Lambda_{2}\right)\right]^{1 / 2}
\end{aligned} \quad \begin{aligned}
& \Lambda_{1}=\sqrt{2 f_{Q}} \lambda+\frac{f_{R}}{2} \\
& \\
& \\
& \lambda=\sqrt{\kappa^{2} P+\frac{f}{2}+\frac{f_{R}^{2}}{8 f_{Q}}} \quad \bullet
\end{aligned} \begin{aligned}
& \Lambda_{2}=\sqrt{2 f_{Q}}\left[\lambda \pm \sqrt{\lambda^{2}-\kappa^{2}(\rho+P)}\right]
\end{aligned}
$$

Beyond $f(R)$

- From $f(R)$ to $f(R Q)$
- $\Delta_{1}=-(1+w) \rho \partial_{\rho} \Omega / \Omega$
- $\theta^{2}=9 H^{2}+\frac{3}{2} \frac{\sigma^{2}}{\left(1+\frac{3}{2} \tilde{\Delta}_{1}\right)^{2}}$
- $\sigma^{2}=\frac{\rho^{\frac{2}{1+w}}}{\left(\Lambda_{1}-\Lambda_{2}\right)^{2}} \frac{\left(C_{12}^{2}+C_{23}^{2}+C_{31}^{2}\right)}{3}$
- The bouncing condition $\theta=0$ requires that $\left(1+\frac{3}{2} \Delta_{1}\right)^{2} \rightarrow \infty$.

For the model $f(R, Q)=R+a \frac{R^{2}}{R_{P}}+\frac{R_{(\mu v)} R^{(\mu \nu)}}{R_{P}}$

- If $\left(\Lambda_{1}-\Lambda_{2}\right) \rightarrow 0$ at some ρ_{B} then isotropic bounce is possible.
- If $Q=Q_{\max }$ a regular isotropic and anisotropic bounce is possible.

Dependence of the bounce on (a, w) in $f(R, Q)$

- The classification of the bouncing solutions for

$$
f(R, Q)=R+a \frac{R^{2}}{R_{P}}+\frac{R_{\mu} R^{\mu \nu}}{R_{P}} \text { is as follows: }
$$

Dependence of the bounce on (a, w) in $f(R, Q)$

- The classification of the bouncing solutions for $f(R, Q)=R+a \frac{R^{2}}{R_{P}}+\frac{R_{\mu \nu} R^{\mu \nu}}{R_{P}}$ is as follows:
- If $a>0$ the bounce occurs when $Q=Q_{\max }$. This is so because $\partial_{\rho} \Omega \sim \partial_{\rho} \lambda \sim \partial_{\rho} Q$ and Q contains a term of the form $\sqrt{\Phi}$ which vanishes at $Q_{\max }$. The density at the maximum is given by

$$
\frac{\kappa^{2} \rho_{Q_{\text {max }}}}{R_{P}} \equiv \frac{1+5 w-2 a(1-3 w)-\sqrt{8(1+w)(2 w-a(1-3 w))}}{(1+2 a)^{2}(1-3 w)^{2}}
$$

- The bounce occurs at that density if $w>\frac{a}{2+3 a}$

Dependence of the bounce on (a, w) in $f(R, Q)$

- The classification of the bouncing solutions for $f(R, Q)=R+a \frac{R^{2}}{R_{P}}+\frac{R_{\mu \nu} R^{\mu \nu}}{R_{P}}$ is as follows:
- If $a \leq 0$ the bounce occurs at the following density:

$$
\frac{\mathrm{K}^{2} \rho_{B}}{R_{P}}= \begin{cases}\frac{1+6 w-2 a(1-3 w)-3 \sqrt{w(2+3 w)-a(1+w)(1-3 w)}}{(1+a)(1+4 a)(1-3 w)^{2}} & \text { if } w \leq w_{0} \\ \frac{\mathrm{~K}^{2} \rho_{\rho_{\text {max }}}}{R_{P}} & \text { if } w \geq w_{0}\end{cases}
$$

- Note that w_{0} is always negative.
- For $w \geq w_{0}$ the bounce is due to reaching $Q_{\max }$.
- For $w \leq w_{0}$ the bounce is due to the vanishing of $\Lambda_{1}-\Lambda_{2}$.

Details of $a \leq 0$ isotropic bounces

- How negative can w be extended beyond the matching point w_{0} ?
- If $-1 / 4<a \leq 0$ restricted by the argument of the square root for

$$
w \leq w_{0} \Rightarrow-\frac{1}{3}+\frac{1}{3} \sqrt{\frac{1+4 a}{1+a}}<w<\infty
$$

- If $a=-1 / 4$ the density at the bounce is given by

$$
\frac{\mathrm{K}^{2} \rho_{B}}{R_{P}}=\left\{\begin{array}{ll}
\frac{1}{3(1+3 w)} & \text { if } w \leq-\frac{1}{9} \\
\frac{\mathrm{k}^{2} \rho_{Q_{\text {max }}}}{\mathrm{R}_{P}} & \text { if } w \geq-\frac{1}{9}
\end{array} \Rightarrow-1 / 3 \leq w<\infty\right.
$$

- If $-1 / 3 \leq a \leq-1 / 4$ Though here the square root is always real, we find numerically that the bouncing solutions cannot be extended beyond the value $w<-1$, where ρ_{B} reaches a maximum $\Rightarrow-1<w<\infty$
- If $-1 \leq a \leq-1 / 3$ here $-1<w$ also. We also find restrictions for $w>1$ due to zeros in the denominator of $H^{2} . \Rightarrow-1<w<\frac{\alpha+\beta a}{(1+3 a)^{2}}>1$, where $\alpha=1.1335$ and $\beta=-3.3608$.
■ If $a \leq-1 w$ depends on the square root $\Rightarrow-1<w<a /(2+3 a)$.

Note that dust and radiation are always non-singular!!!

Conclusions and Perspectives

- Palatini theories have an extraordinary ability to avoid singularities without the need for extra degrees of freedom:
- Using $f(R)$ Lagrangians we reproduced the isotropic LQC dynamics.
- Other simple models, $f(R)=R+R^{2} / R_{P}$, also avoid the big bang.
$f(R, Q)$ Lagrangians generate bouncing solutions in anisotropic scenarios and for standard sources of matter and radiation, $0 \leq w \leq 1 / 3$!!!

Conclusions and Perspectives

- Palatini theories have an extraordinary ability to avoid singularities without the need for extra degrees of freedom:
- Using $f(R)$ Lagrangians we reproduced the isotropic LQC dynamics.
- Other simple models, $f(R)=R+R^{2} / R_{P}$, also avoid the big bang.
> $f(R, Q)$ Lagrangians generate bouncing solutions in anisotropic scenarios and for standard sources of matter and radiation, $0 \leq w \leq 1 / 3$!!!
- The independent connection is fundamental to avoid new degrees of freedom and yield non-linear matter contributions that generate the bounce.

Conclusions and Perspectives

- Palatini theories have an extraordinary ability to avoid singularities without the need for extra degrees of freedom:
- Using $f(R)$ Lagrangians we reproduced the isotropic LQC dynamics.
- Other simple models, $f(R)=R+R^{2} / R_{P}$, also avoid the big bang.
$f(R, Q)$ Lagrangians generate bouncing solutions in anisotropic scenarios
and for standard sources of matter and radiation, $0 \leq w \leq 1 / 3!!!$
- The independent connection is fundamental to avoid new degrees of freedom and yield non-linear matter contributions that generate the bounce.
- Natural future directions:
- Cosmology of other Bianchi models.
- Gravitational collapse and structure of compact objects in $f(R, Q)$.
- Exploration of more general quadratic Lagrangians.
- Hamiltonian description of general Palatini theories.

- Motivation and Summary

Thanks !!!

