FURTHER IMPROVEMENTS IN

THE UNDERSTANDING

OF ISOTROPIC

LOOP (EIVANTDMM COSMOLOGY

Javier Olmedo Nieto

Instituto de Estructura de la Materia-CSIC(Spain) In collaboration with M. Martín Benito \& G. Mena Marugán

$$
\begin{gathered}
\text { ERE2010 Granada } \\
\text { (Spain) }
\end{gathered}
$$

Preamble

- One attempt to check Loop Quantum Gravity (LQG) implications is Loop Quantum Cosmology (LQC).
- Inside LQC, the simplest models are Friedmann-RobertsonWalker cosmologies coupled to a (homogeneous) massless scalar field (Ashtekar-Pawlowski-Singh).
- It has provided strong physical results related with the big bang singularity.
- Its mathematical framework is very rigorous.

Preamble

- But some important questions have to be deal with.
- A suitable and rigorous procedure to densitize the Hamiltonian Constraint.
- To give rise to simple superselection sectors with better physical properties than those of previous works.
- The theory should has a unique asymptotic limit.
- A generic (non-simplified) explicitly solvable model.

Classical model

- Flat open FRW model with spatial manifold $\sim \mathbb{R}^{3} \rightarrow$ fiducial structures V_{0} \& \mathcal{V} - The Momentum Constraint is fixed owing to the homogeneity
- Only one geometrical d.o.f.

$$
\{c, p\}=8 \pi G \gamma / 3
$$

- The matter d.o.f is encoded by

$$
\left\{\phi, p_{\phi}\right\}=1
$$

- The integrated Hamiltonian Constraint satisifies $C(N)=N C$, owing to the homogeneity, with

$$
C=-6 \gamma^{-2} c^{2} \sqrt{|p|}+8 \pi G p_{\phi}^{2} V^{-1}, V:=|p|^{3 / 2}
$$

- Friedmann equation

$$
p^{-1} d p= \pm 16 \pi G d \phi / 3
$$

- Classical evolution

Quantum framework

- Matter part: standard representation

$$
\mathcal{H}_{\text {mat }}^{\text {kin }}=L^{2}(\mathbb{R}, d \phi), \hat{p}_{\phi}=-i \hbar \partial_{\phi}
$$

- Geometrical contribution: polymeric representation holonomy $h(\mu) \rightarrow$ matrix element $\hat{\mathcal{N}}_{\mu} \rightarrow$ momentum repres. $|\mu\rangle$

$$
\mathcal{H}_{\text {grav }}^{\text {kin }}=\overline{\operatorname{span}\{|\mu\rangle, \mu \in \mathbb{R}\}}, \quad\left\langle\mu \mid \mu^{\prime}\right\rangle=\delta_{\mu \mu^{\prime}}, \quad \hat{\mathcal{X}}_{\mu}\left|\mu^{\prime}\right\rangle=\left|\mu^{\prime}+\mu\right\rangle
$$

- Improved dynamics
- Hypothesis: Minimum physical area of the system \rightarrow

$$
\frac{\hat{1}}{\bar{\mu}}=\frac{\widehat{\sqrt{|p|}}}{\sqrt{\Delta}}
$$

A new label $v(\mu)$."Slight" modification-redefinition of the holonomy operator

$$
\hat{\mathcal{N}}_{\bar{\mu}}|v\rangle=|v+1\rangle, \quad \hat{p}|v\rangle=\operatorname{sign}(v)\left(2 \pi \gamma l_{P l}^{2} \sqrt{\Delta}|v|\right)^{2 / 3}|v\rangle
$$

Quantum Hamiltonian Constraint

- The operator \hat{V}^{-1} diverges on $|v=0\rangle$-analog to classical singularity-. In this case one appeals to Thiemann's trick !!!

$$
\left.\left[\frac{\hat{1}}{V}\right]:=\left[\frac{\widehat{1}}{\sqrt{|p|}}\right]^{3} ; \frac{\widehat{1}}{\sqrt{|p|}}=\frac{3}{4 \pi \gamma l_{p l}^{2} \sqrt{\Delta}} \widehat{\operatorname{sign}(p)} \widehat{\sqrt{|p|} \mid} \hat{\mathcal{N}}_{-\bar{\mu}} \widehat{\sqrt{|p|} \mid} \hat{\mathcal{N}}_{\bar{\mu}}-\hat{\mathcal{N}}_{\bar{\mu}} \widehat{\sqrt{|p|} \mid} \hat{\mathcal{N}}_{-\bar{\mu}}\right)
$$

- The factor ordering for \hat{C} comes from Bianchi I quantum models

$$
\hat{C}:=\left[\frac{\hat{1}}{V}\right]^{1 / 2}\left(\frac{-6}{\gamma^{2}} \widehat{\Omega}^{2}+8 \pi G \hat{p}_{\phi}^{2}\right)\left[\frac{\hat{1}}{V}\right]^{1 / 2}
$$

Densitization

- The operator $\mid \widehat{1 / V}$ annihilates the state $|v=0\rangle \rightarrow \hat{C}$ does too. Its orthogonal complement remains invariant $\rightarrow|v=0\rangle$ doesn't contrib.
"lives" in the dual algebraic

$$
\overline{\mathcal{H}}_{g r a v}^{\text {kin }}=\overline{\operatorname{span}\{|v\rangle, v \in \mathbb{R}-\{0\}\}}
$$

of $\operatorname{span}\{|v\rangle, v \in \mathbb{R}-\{0\}\}$

- If $(\psi \mid$ is a solution of \hat{C}, we define through $[\widehat{1 / V}]$ a bijection

$$
\left(\psi^{\prime} \mid=(\psi| | \widehat{1 / V}]^{1 / 2} \Rightarrow \hat{C}:=[\widehat{1 / V}]^{-1 / 2} \hat{C}[\widehat{1 / V}]^{-1 / 2}, \hat{C}=-6 \gamma^{-2} \widehat{\Omega}^{2}+8 \pi G \hat{p}_{\phi}^{2}\right.
$$

where $\left(\psi^{\prime} \mid\right.$ are solutions of \hat{C}

Geometrical properties

Superselection sectors

- The action of $\widehat{\Omega}^{2}$ on the basis $|v\rangle$ is given by

$$
\begin{gathered}
\hat{\Omega}^{2}|v\rangle=-f_{+}(v) f_{+}(v+2)|v+4\rangle+\left[f_{+}^{2}(v)+f_{-}^{2}(v)\right]|v\rangle-f_{-}(v) f_{-}(v-2)|v-4\rangle \\
f_{ \pm}(v)=\frac{\pi \gamma \hbar G}{3} g(v+2)(\operatorname{sign}(v \pm 2)+\operatorname{sign}(v)) g(v), \quad g(v)=\frac{v^{1 / 6}}{\| v+\left.1\right|^{1 / 3}-\left.|v-1|^{1 / 3}\right|^{1 / 2}}
\end{gathered}
$$

- Owing to $f_{-}(v) f_{-}(v-2)=0$ in $v \in(0,4]$, and $f_{+}(v) f_{+}(v+2)=0$ in $v \in[-4,0)$ it is possible to decouple the semiaxis $v>0$ and $v<0-\quad$ Important property
- The operator $\widehat{\Omega}^{2}$ relates states contained in $\mathcal{L}_{\varepsilon}^{ \pm}:=\{\nu= \pm(\varepsilon+4 \mathrm{n}), n \in \mathbb{N}\}$ with $\varepsilon \in(0,4] \rightarrow$ superselection sectors $\widetilde{\mathcal{H}}_{\varepsilon}^{ \pm}$

Geometrical properties

Spectral analysis

- The operator $\widehat{\Omega}^{2}$ is essentially self-adjoint on $\widetilde{\mathcal{H}}_{\varepsilon}^{ \pm}$and it is positive definite with eigenvalues $\lambda \in[0, \infty)$ (continuum sprectum)

Generalized eigenfunctions

- The eigenfunctions of $\widehat{\Omega}^{2}$ have the form

$$
\left|e_{\lambda}^{\varepsilon}\right\rangle=\sum_{v \in L} e_{\lambda}^{\varepsilon}(v)|v\rangle, \quad e_{\lambda}^{\varepsilon}(\varepsilon+4 \mathrm{n})=e_{\lambda}^{\varepsilon}(\varepsilon) F(\lambda, \varepsilon, n)
$$

- They are completely determined if $\left\langle e_{\lambda}^{\varepsilon} \mid e_{\lambda^{\prime}}^{\varepsilon}\right\rangle=\delta\left(\lambda-\lambda^{\prime}\right)$ and $e_{\lambda}^{\varepsilon}(\varepsilon)>0$
- The spectral resolution of the identity $I=\int_{0}^{\infty} d \lambda\left|e_{\lambda}^{\varepsilon}\right\rangle\left\langle e_{\lambda}^{\varepsilon}\right|$
(1-fold!!!)

Asymptotic limit

- For $v \gg 1$, the operator $\widehat{\Omega}^{2}$ is a differential operator

$$
\widehat{\widehat{\Omega}}^{2}=-\beta^{2}\left(1+4 v \partial+4(v \partial)^{2}\right) \quad(\beta:=4 \pi \gamma G \hbar)
$$

- The eigenfunctions are 2-fold \underline{e}_{σ} (in) and $\underline{e}_{\sigma}^{*}$ (out)
$\underline{e}_{\sigma}(v)=(2 \pi \beta v)^{-1 / 2} e^{-i \sigma \ln |\nu| \beta}, \quad\left\langle\underline{e}_{\sigma} \mid \underline{e}_{\sigma^{\prime}}\right\rangle=\delta\left(\sigma-\sigma^{\prime}\right), \quad I=\int_{-\infty}^{\infty} d \sigma\left|\underline{e}_{\sigma}\right\rangle\left\langle\underline{e}_{\sigma}\right|$
- LQC eigenfunctions have the asymptotic limit

$$
e_{\lambda}^{\varepsilon}(v) \rightarrow r\left\{\exp \left[i \phi_{\varepsilon}(\sigma)\right] \underline{e}_{\sigma}(v)+\exp \left[-i \phi_{\varepsilon}(\sigma)\right] \underline{e}_{-\sigma}(v)\right\}, \quad(\sigma= \pm \sqrt{\lambda})
$$

EXACT STANDING WAVE!!!

Quantum bounce mechanism

- Ingredient 1: The physical states have support on one semilattice. They "live", for example, on $v>0$. One initial data on $v=\varepsilon$ determines all the eigenfunctions. No boundary condition and no cross over $v=0$
- Ingredient 2: All the eigenfunctions behave like a standing wave for $v \gg 1$. They have the same contribution of expanding and contracting universes

$I_{1}+I_{2}=$ QUANTUM BOUNCE!!!

- With APS factor ordering, the same analysis is available for $\varepsilon=2$, and also for $\varepsilon=0$ with a boundary condition $(\Psi(v)=\Psi(-v))$
- For $\varepsilon \neq 0,2$ the bounce is reached for semiclassical states, once a specific eigenf. basis (with discontinuous asympt. limit) is chosen

Comments and conclusions

- Motivated by some drawbacks and the results in Bianchi I models
- Quantum mechanics principles allow us to resolve the big bang singularity
- Owing to that, it is possible establish a method to formally densitize in an intuitive and natural way (although is not the only one) the Hamiltonian Constraint
- Taking into account the orientation of the triad, one can decouple their contributions contained in different semiaxis
- Our theory has a well defined asymptotic limit, whose behavior let us (together with the last property) demonstrate the bouncing nature of all the trajectories
- We have resolved a non-simplified model, whose results are valid for each superselection sector and for all physical states

