Isotropization of non-diagonal Bianchi I symmetric spacetimes with collisionless matter
 (based on arXiv 1007.0184)

Ernesto Nungesser

Max-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute

ERE 2010, Granada

Why study Bianchi spacetimes?

- Inhomogeneous spacetimes are quite difficult
- BKL-analysis of cosmological singularities, general solutions behave like homogeneous solutions (Bianchi IX "Mixmaster")

Why am I studying Bianchi spacetimes?

- To study the (mathematical) structure of the Einstein equations
- Study of the Einstein equations with a kinetic description of the matter
- Study of the asymptotics, first the "easy" direction in an "easy" Bianchi type

My spacetime: the easiest case, Bianchi I

- ${ }^{4} g=-d t^{2}+g_{a b}(t) d x^{a} d x^{b}$
- The "easiest" homogeneous spacetime which is not (necessarily) isotropic
- Translations in \mathbb{R}^{3} as homogeneity group
- "Basis" for higher Bianchi types
- The only Bianchi type besides type VII_{0} which includes Flat Friedmann, but in principle all Bianchi types are compatible with a quasiisotropic epoch...

My matter model: collisionless matter

- Vlasov $=$ Boltzmann without collision term
- Kinetic description $f\left(t, x^{a}, p^{a}\right)$ often used in (astro)physics
- Perfect fluid is somehow natural in an isotropic spacetime, assuming a linear equation of state makes life simple...
- Vlasov avoids certain unphysical singularities
- For Bianchi I the Vlasov equation

$$
\frac{\partial f}{\partial t}+2 k_{b}^{a} p^{b} \frac{\partial f}{\partial p^{a}}=0
$$

can be solved explicitly and f if expressed as a function of p_{i} is independent of time

- In particular

$$
\begin{aligned}
& \rho=\int f_{0}\left(p_{i}\right)\left(m^{2}+g^{c d} p_{c} p_{d}\right)^{\frac{1}{2}}(\operatorname{det} g)^{-\frac{1}{2}} d p_{1} d p_{2} d p_{3} \\
& S_{a b}=\int f_{0}\left(p_{i}\right) p_{a} p_{b}\left(m^{2}+g^{c d} p_{c} p_{d}\right)^{-\frac{1}{2}}(\operatorname{det} g)^{-\frac{1}{2}} d p_{1} d p_{2} d p_{3} \\
& T_{0 a}=0
\end{aligned}
$$

- The fact that the dependence on p_{i} remains makes the whole system a borderline case between dynamical systems and systems of PDE due to the "integro-differential" aspect. We will use PDE-techniques.

$3+1$ decomposition and initial value formulation

- Instead of $G_{\mu \nu}=8 \pi T_{\mu \nu}$ we use spatial metric $g_{a b}$ and the second fundamental form $k_{a b}$.
- Then EE for Bianchi I simplify to

$$
\begin{aligned}
& \dot{g}_{a b}=-2 k_{a b} \\
& \dot{k}_{a b}=H k_{a b}-2 k_{a c} k_{b}^{c}-8 \pi\left(S_{a b}-\frac{1}{2} g_{a b} \operatorname{tr} S\right)-4 \pi \rho g_{a b}
\end{aligned}
$$

where we have used the notations $\operatorname{tr} S=g^{a b} S_{a b}, H=\operatorname{tr} k$. From the constraint equations:

$$
\begin{aligned}
-k_{a b} k^{a b}+H^{2} & =16 \pi \rho \\
T_{0 a} & =0
\end{aligned}
$$

Physical motivation: Stability of Einstein-de Sitter

- Matter-dominated Era, relatively small eigenvelocities of galaxies
- Does Velocity dispersion decay due to expansion?
- Isotropization?
- "Structural stability" of the fluid model at late times?
- Yes for Bianchi I + reflection symmetry [Rendall 96]
- This model is diagonal, what happens for the non-diagonal case?

Small data assumptions

- Close to isotropic: shear parameter, $F=\frac{\sigma_{a b} \sigma^{a b}}{H^{2}}$ is small, where $\sigma_{a b}$ is the trace-free part and H the trace of the second fundamental form
- $F \sim$ temperature fluctuations $\Delta T / T$
- Maximal Velocities P are bounded, i.e. the spacetime is close to dust, where P is

$$
P(t)=\sup \left\{\left.|p|=\left(g^{a b} p_{a} p_{b}\right)^{\frac{1}{2}} \right\rvert\, f(t, p) \neq 0\right\}
$$

Theorem

Consider any C^{∞} solution of the Einstein-Vlasov system with Bianchi l-symmetry and with C^{∞} initial data. Assume that $F\left(t_{0}\right)$ and $P\left(t_{0}\right)$ are sufficiently small. Then at late times one can make the following estimates:

$$
\begin{aligned}
H(t) & =-2 t^{-1}\left(1+O\left(t^{-1}\right)\right) \\
P(t) & =O\left(t^{-\frac{2}{3}+\epsilon}\right) \\
F(t) & =O\left(t^{-2}\right)
\end{aligned}
$$

[2nd eq. implies that asymptotically there is a dust-like behaviour $\left.S_{a b} / \rho=O\left(t^{-\frac{4}{3}+\epsilon}\right)\right]$

Generalized Kasner exponents

- Let λ_{i} be the eigenvalues of $k_{i j}$ with respect to $g_{i j}$, i.e., the solutions of $\operatorname{det}\left(k_{j}^{i}-\lambda \delta_{j}^{i}\right)=0$
- We define $p_{i}=\frac{\lambda_{i}}{H}$ as the generalized Kasner exponents. They satisfy the first but not the second Kasner relation
- Example: Einstein - de Sitter $\left(p_{i}=\frac{1}{3}\right)$

$$
{ }^{4} g=-d t^{2}+t^{\frac{4}{3}}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Theorem

Consider the same assumptions as in the previous theorem. Then

$$
p_{i}=\frac{1}{3}+O\left(t^{-1}\right)
$$

and

$$
\begin{aligned}
& g_{a b}=t^{+\frac{4}{3}}\left[\mathcal{G}_{a b}+O\left(t^{-2}\right)\right] \\
& g^{a b}=t^{-\frac{4}{3}}\left[\mathcal{G}^{a b}+O\left(t^{-2}\right)\right]
\end{aligned}
$$

where $\mathcal{G}_{a b}$ and $\mathcal{G}^{a b}$ are independent of t.

Outlook

- Other Bianchi types?
- As a first step analysis of diagonal, but non-LRS spacetimes starting with Bianchi II
- There are other solutions which may act as "attractors", for instance the Collins-Stewart solution for Bianchi II
- Later: higher Bianchi types and inhomogeneous space-times as Gowdy-symmetric ones
- Is it possible to remove the small data assumption(s)?

