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Relativistic positioning systems

Let us consider a relativistic positioning system in Minkowski space-time,
i.e. four emitters γA broadcasting their proper time τA (A = 1, 2, 3, 4).

Let P be an event of the emission region R, that is, a user at P receives
the four broadcast times {τA} (emission coordinates of P).

The vector mA = x− γA is :

null: m2
A = 0,

future-pointing: εu ·mA < 0.
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mA gives the trajectory followed by the electromagnetic signal from the
emitter γA(τA) to the reception event P ∈ R.
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Emission equations

� The transformation xα = κα(τA) from emission {τA} to inertial {xα}
coordinates is the solution of the emission equations:

(x− γA) · (x− γA) = 0 , ε u · (x− γA) < 0 , A = 1, 2, 3, 4 ,

where x ≡ (xα), γA ≡ γA(τA),

2ε is the metric signature, and

u is a future-pointing time-like vector.

The emission equations say that the
vectors mA = x− γA are:

null: m2
A = 0,

future-pointing: εu ·mA < 0.
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The configuration vector χ

The emission data {τA} received at P are the emission coordinates of the
event P ∈ R and were broadcast at the emission events {γA(τA)}:

{τ1, τ2, τ3, τ4} ←↩ {γ1(τ1), γ2(τ2), γ3(τ3), γ4(τ4)}

The hyperplane generated by the four emission events {γA(τA)} is called
the configuration of the emitters for P .

The configuration vector

χ

is orthogonal to this hyperplane.
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Emission region and coordinate region

Emission region, R ⊆M4: space-time region reached by the signals.

Emission function:

Θ : R −→ T ≡
4
× {τ} ≈ R4 Θ : x 7−→ (τA) = Θ(x)

Emission coordinate region, C ⊂ R: where Θ is invertible:
κ = Θ−1 , xα = κ(τA)

Coordinate condition:

dτ1 ∧ dτ2 ∧ dτ3 ∧ dτ4 6= 0 ⇐⇒ jΘ(x) 6= 0 =⇒ χ 6= 0

Zero Jacobian hypersurface: J ≡ {x | jΘ(x) = 0}, R = C ∪ J .
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The coordinate transformation

Let us suppose that the world-lines γA(τA) of the emitters in an inertial system
{xα} are known

In all the emission coordinate region C the coordinate
transformation x = κ(τA) is given by:

x = γ4 + y∗ −
y2
∗ χ

(y∗ · χ) + ε̂
√

(y∗ · χ)2 − y2
∗χ

2

y∗, χ, ε̂

� Covariant solution: x = f(γA) = f(γA(τA)) = κ(τA)
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The coordinate transformation

Quantities y∗, χ are both computable from γA(τA).

y∗ =
1

ξ · χ
i(ξ)H, H ≡ ∗(Ω1 e2 ∧ e3 + Ω2 e3 ∧ e1 + Ω3 e1 ∧ e2)

ξ being any vector transversal to the configuration, ξ · χ 6= 0, and

ea = γa − γ4 (a = 1, 2, 3)

Ωa = 1
2 (ea)2

χ ≡ ∗(e1 ∧ e2 ∧ e3)

χ ≡ configuration vector
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The coordinate transformation

Quantity ε̂ is the orientation of the positioning system with respect to the
event that receives the data {τA}.

ε̂ ≡ sgn ∗ (m1 ∧m2 ∧m3 ∧m4),

mA ≡ x− γA(τA), (A = 1, ..., 4),

Problem: To obtain x from (1) one needs to determine the orientation ε̂,
which involves the unknown x.

Therefore, in order to show that the formula:

x = γ4 + y∗ −
y2
∗ χ

(y∗ · χ) + ε̂
√

(y∗ · χ)2 − y2
∗χ

2
(1)

does not chase its own tail, one must be able to determine the orientation
ε̂ at x by using a procedure that does not involve the previous knowledge of
x.
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Problem

To determine the orientation

ε̂

of the relativistic positioning system.

Next, we study the region where ε̂ is computable by the positioning data (the
central region of the positioning system) which does not cover the whole
emission coordinate region C.
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Emission configuration regions

Emission coordinate region: C = Cs ∪ C` ∪ Ct

Space-like configuration region:

Cs ≡ {x ∈ C | ε χ2 < 0}

Light-like configuration region:

C` ≡ {x ∈ C|χ2 = 0}

Time-like configuration region:

Ct ≡ {x ∈ C | ε χ2 > 0}

Central region:

CC = Cs ∪ C`

C l
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t

3D static situation
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Non-uniqueness of emission solutions
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Emission regions and coordinate domains

Emission coordinate region: C = Cs ∪ C` ∪ Ct = CF ∪ CB

Timelike coordinate region:

Ct = CF
t ∪ CB , Θ(CF

t ) = Θ(CB)

Back coordinate domain:

CB = Ct − CF
t

Front coordinate domain:

CF = Cs ∪ C` ∪ CF
t

Central region:

CC = Cs ∪ C`
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3D static situation
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The orientation ε̂

The orientation ε̂ ≡ sgn ∗ (m1 ∧m2 ∧m3 ∧m4) is the sign of the Jacobian
determinant jΘ(x).

ε̂ is constant on each emission coordinate domain CF and CB .

In the central region CC ≡ Cs ∪ C`, the orientation ε̂ is obtainable from the
data {τA, γA(τA)}:

∀x ∈ CC , ε̂ = sgn (u · χ).

for any future pointing time-like vector u. Then, the transformation is

x = γ4 + y∗ −
y2
∗ χ

(y∗ · χ) + sgn (u · χ)
√

(y∗ · χ)2 − y2
∗χ

2

Can the users in the timelike region Ct know the orientation?
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The orientation ε̂

The events where jΘ(x) = 0 are those for which any user in them can see
the four emitters on a circle in his celestial sphere (Coll and Pozo 2005).
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ε̂ = sgn
(
∗u (m1 ∧m2 ∧m3)

[
i(m4)(L̄

1 + L̄2 + L̄3)− 1
])

mA = −ε(u ·mA)(u + mA), L̄a =
εabc ∗u(mb ∧mc)

2 ∗u (m1 ∧m2 ∧m3)

{L̄a} and {ma} are dual each other, L̄a(mb) = δa
b .
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The orientation ε̂
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ε̂ = +1 ε̂ = −1

Observational method to determine ε̂:

• Consider the oriented half cone determined by the lines of sight of
three emitters, and then, to look for the position of the other emitter.

• The orientation is positive (negative) if the line of sight of this fourth
emitter is interior (exterior) to the above half cone.
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Summary and comments

We have outlined a method to obtain the orientation of a relativistic po-
sitioning system allowing to determine the user’s space-time location in
inertial frame.

To localize the users of a GNSS, several geometric methods and algebraic
algorithms [Bancroft (1985), Kreuse (1987), Chaffee and Abel (1994), ... ]
has been developed in the past which are still in use.

Relativistic positioning concepts has been recently implemented in an algo-
rithm to obtain the Schwarzschild coordinates of a user from his emission
coordinates,

• P. Delva, U. Kostić and A. C̆adez̆ Numerical modeling of a Global
Navigation satellite System in a general relativistic framework Adv.
Space Research (2010) arXiv:1005.0477[gr-qc]
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Summary and comments

In solving numerically the GNSS navigation equations, one usually pick out
an approximate zero order solution.

In flat space-time, the expression

x = γ4 + y∗ −
y2
∗ χ

(y∗ · χ) + ε̂
√

(y∗ · χ)2 − y2
∗χ

2

is the covariant solution of the location problem. For weak gravitational
fields it provides the exact non-perturbed zero order solution.

A numerical analysis of this solution has been accomplished by N. Puchades
and D. Sáez (see Puchades’s talk that follows).
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