From emission to inertial coordinates: an analytical approach

J. A. Morales

Departament d'Astronomia i Astrofísica
Universitat de València

- B. Coll et al. Positioning systems in Minkowski spacetime: from emission to inertial coordinates CQG 27 (2010) 06501

Relativistic positioning systems

- Let us consider a relativistic positioning system in Minkowski space-time, i.e. four emitters γ_{A} broadcasting their proper time $\tau^{A}(A=1,2,3,4)$.
- Let P be an event of the emission region \mathcal{R}, that is, a user at P receives the four broadcast times $\left\{\tau^{A}\right\}$ (emission coordinates of \mathbf{P}).

The vector $m_{A}=x-\gamma_{A}$ is:

- null: $m_{A}^{2}=0$,
- future-pointing: $\epsilon u \cdot m_{A}<0$.

- m_{A} gives the trajectory followed by the electromagnetic signal from the emitter $\gamma_{A}\left(\tau^{A}\right)$ to the reception event $P \in \mathcal{R}$.

Emission equations

\diamond The transformation $x^{\alpha}=\kappa^{\alpha}\left(\tau^{A}\right)$ from emission $\left\{\tau^{A}\right\}$ to inertial $\left\{x^{\alpha}\right\}$ coordinates is the solution of the emission equations:

$$
\left(x-\gamma_{A}\right) \cdot\left(x-\gamma_{A}\right)=0, \quad \epsilon u \cdot\left(x-\gamma_{A}\right)<0, \quad A=1,2,3,4
$$

where $x \equiv\left(x^{\alpha}\right), \gamma_{A} \equiv \gamma_{A}\left(\tau^{A}\right)$,
2ϵ is the metric signature, and
u is a future-pointing time-like vector.

The emission equations say that the vectors $m_{A}=x-\gamma_{A}$ are:

- null: $m_{A}^{2}=0$,
- future-pointing: $\epsilon u \cdot m_{A}<0$.

The configuration vector

- The emission data $\left\{\tau^{A}\right\}$ received at P are the emission coordinates of the event $P \in \mathcal{R}$ and were broadcast at the emission events $\left\{\gamma_{A}\left(\tau^{A}\right)\right\}$:

$$
\left\{\tau^{1}, \tau^{2}, \tau^{3}, \tau^{4}\right\} \quad \hookleftarrow \quad\left\{\gamma_{1}\left(\tau^{1}\right), \gamma_{2}\left(\tau^{2}\right), \gamma_{3}\left(\tau^{3}\right), \gamma_{4}\left(\tau^{4}\right)\right\}
$$

The hyperplane generated by the four emission events $\left\{\gamma_{A}\left(\tau^{A}\right)\right\}$ is called the configuration of the emitters for P.

- The configuration vector
is orthogonal to this hyperplane.

Emission region and coordinate region

- Emission region, $\mathcal{R} \subseteq \mathcal{M}^{4}$: space-time region reached by the signals.
- Emission function:

$$
\Theta: \mathcal{R} \longrightarrow \mathcal{T} \equiv \stackrel{4}{\times}\{\tau\} \approx \mathbb{R}^{4} \quad \Theta: x \longmapsto\left(\tau^{A}\right)=\Theta(x)
$$

- Emission coordinate region, $\mathcal{C} \subset \mathcal{R}$: where Θ is invertible:

$$
\kappa=\Theta^{-1}, \quad x^{\alpha}=\kappa\left(\tau^{\overparen{A}}\right)
$$

- Coordinate condition:

$$
d \tau^{1} \wedge d \tau^{2} \wedge d \tau^{3} \wedge d \tau^{4} \neq 0 \quad \Longleftrightarrow \quad j_{\Theta}(x) \neq 0 \quad \Longrightarrow \quad \chi \neq 0
$$

- Zero Jacobian hypersurface: $\mathcal{J} \equiv\left\{x \mid j_{\Theta}(x)=0\right\}, \quad \mathcal{R}=\mathcal{C} \cup \mathcal{J}$.

Let us suppose that the world-lines $\gamma_{A}\left(\tau^{A}\right)$ of the emitters in an inertial system $\left\{x^{\alpha}\right\}$ are known

In all the emission coordinate region \mathcal{C} the coordinate transformation $x=\kappa\left(\tau^{A}\right)$ is given by:

$$
x=\gamma_{4}+y_{*}-\frac{y_{*}^{2} \chi}{\left(y_{*} \cdot \chi\right)+\hat{\epsilon} \sqrt{\left(y_{*} \cdot \chi\right)^{2}-y_{*}^{2} \chi^{2}}}
$$

$$
y_{*}, \quad \chi,
$$

$$
\hat{\epsilon}
$$

\diamond Covariant solution:

$$
x=f\left(\gamma_{A}\right)=f\left(\gamma_{A}\left(\tau^{A}\right)\right)=\kappa\left(\tau^{A}\right)
$$

The coordinate transformation

- Quantities y_{*}, χ are both computable from $\gamma_{A}\left(\tau^{A}\right)$.

$$
y_{*}=\frac{1}{\xi \cdot \chi} i(\xi) H, \quad H \equiv *\left(\Omega_{1} e_{2} \wedge e_{3}+\Omega_{2} e_{3} \wedge e_{1}+\Omega_{3} e_{1} \wedge e_{2}\right)
$$

ξ being any vector transversal to the configuration, $\xi \cdot \chi \neq 0$, and

$$
e_{a}=\gamma_{a}-\gamma_{4} \quad(a=1,2,3)
$$

$$
\Omega_{a}=\frac{1}{2}\left(e_{a}\right)^{2}
$$

$$
\chi \equiv *\left(e_{1} \wedge e_{2} \wedge e_{3}\right)
$$

$$
\chi \equiv \text { configuration vector }
$$

The coordinate transformation

- Quantity $\hat{\epsilon}$ is the orientation of the positioning system with respect to the event that receives the data $\left\{\tau^{A}\right\}$.

$$
\begin{aligned}
\hat{\epsilon} & \equiv \operatorname{sgn} *\left(m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4}\right) \\
m_{A} & \equiv x-\gamma_{A}\left(\tau^{A}\right), \quad(A=1, \ldots, 4)
\end{aligned}
$$

- Problem: To obtain x from (1) one needs to determine the orientation $\hat{\epsilon}$, which involves the unknown x.
- Therefore, in order to show that the formula:

$$
\begin{equation*}
x=\gamma_{4}+y_{*}-\frac{y_{*}^{2} \chi}{\left(y_{*} \cdot \chi\right)+\hat{\epsilon} \sqrt{\left(y_{*} \cdot \chi\right)^{2}-y_{*}^{2} \chi^{2}}} \tag{1}
\end{equation*}
$$

does not chase its own tail, one must be able to determine the orientation $\hat{\epsilon}$ at x by using a procedure that does not involve the previous knowledge of x.

Problem

- To determine the orientation
$\hat{\epsilon}$
of the relativistic positioning system.
- Next, we study the region where $\hat{\epsilon}$ is computable by the positioning data (the central region of the positioning system) which does not cover the whole emission coordinate region \mathcal{C}.

Emission configuration regions

Emission coordinate region: $\quad \mathcal{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell} \cup \mathcal{C}_{t}$
Space-like configuration region:

$$
\mathcal{C}_{s} \equiv\left\{x \in \mathcal{C} \mid \epsilon \chi^{2}<0\right\}
$$

Light-like configuration region:

$$
\mathcal{C}_{\ell} \equiv\left\{x \in \mathcal{C} \mid \chi^{2}=0\right\}
$$

Time-like configuration region:

$$
\mathcal{C}_{t} \equiv\left\{x \in \mathcal{C} \mid \epsilon \chi^{2}>0\right\}
$$

Central region:

$$
\mathcal{C}^{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell}
$$

3D static situation

Non-uniqueness of emission solutions

Emission regions and coordinate domains

Emission coordinate region: $\mathcal{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell} \cup \mathcal{C}_{t}=\mathcal{C}^{F} \cup \mathcal{C}^{B}$
Timelike coordinate region:

$$
\mathcal{C}_{t}=\mathcal{C}_{t}^{F} \cup \mathcal{C}^{B}, \quad \Theta\left(\mathcal{C}_{t}^{F}\right)=\Theta\left(\mathcal{C}^{B}\right)
$$

Back coordinate domain:

$$
\mathcal{C}^{B}=\mathcal{C}_{t}-\mathcal{C}_{t}^{F}
$$

Front coordinate domain:

$$
\mathcal{C}^{F}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell} \cup \mathcal{C}_{t}^{F}
$$

Central region:

$$
\mathcal{C}^{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell}
$$

3D static situation

The orientation $\hat{\epsilon}$

- The orientation $\hat{\epsilon} \equiv \operatorname{sgn} *\left(m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4}\right)$ is the sign of the Jacobian determinant $j_{\Theta}(x)$.
- $\hat{\epsilon}$ is constant on each emission coordinate domain \mathcal{C}^{F} and \mathcal{C}^{B}.
- In the central region $\mathcal{C}^{C} \equiv \mathcal{C}_{s} \cup \mathcal{C}_{\ell}$, the orientation $\hat{\epsilon}$ is obtainable from the data $\left\{\tau^{A}, \gamma_{A}\left(\tau^{A}\right)\right\}$:

$$
\forall x \in \mathcal{C}^{C}, \quad \hat{\epsilon}=\operatorname{sgn}(u \cdot \chi)
$$

for any future pointing time-like vector u. Then, the transformation is

$$
x=\gamma_{4}+y_{*}-\frac{y_{*}^{2} \chi}{\left(y_{*} \cdot \chi\right)+\operatorname{sgn}(u \cdot \chi) \sqrt{\left(y_{*} \cdot \chi\right)^{2}-y_{*}^{2} \chi^{2}}}
$$

- Can the users in the timelike region \mathcal{C}_{t} know the orientation?

The orientation $\hat{\epsilon}$

- The events where $j_{\Theta}(x)=0$ are those for which any user in them can see the four emitters on a circle in his celestial sphere (Coll and Pozo 2005).

$$
\hat{\epsilon}=\operatorname{sgn}\left(*_{u}\left(\bar{m}_{1} \wedge \bar{m}_{2} \wedge \bar{m}_{3}\right)\left[i\left(\bar{m}_{4}\right)\left(\bar{L}^{1}+\bar{L}^{2}+\bar{L}^{3}\right)-1\right]\right)
$$

$$
m_{A}=-\epsilon\left(u \cdot m_{A}\right)\left(u+\bar{m}_{A}\right), \quad \bar{L}^{a}=\frac{\epsilon^{a b c} *_{u}\left(\bar{m}_{b} \wedge \bar{m}_{c}\right)}{2 *_{u}\left(\bar{m}_{1} \wedge \bar{m}_{2} \wedge \bar{m}_{3}\right)}
$$

$\left\{\bar{L}^{a}\right\}$ and $\left\{\bar{m}_{a}\right\}$ are dual each other, $\bar{L}^{a}\left(\bar{m}_{b}\right)=\delta_{b}^{a}$.

The orientation $\hat{\epsilon}$

$\hat{\epsilon}=+1$

$\hat{\epsilon}=-1$

- Observational method to determine $\hat{\epsilon}$:
- Consider the oriented half cone determined by the lines of sight of three emitters, and then, to look for the position of the other emitter.
- The orientation is positive (negative) if the line of sight of this fourth emitter is interior (exterior) to the above half cone.

Summary and comments

- We have outlined a method to obtain the orientation of a relativistic positioning system allowing to determine the user's space-time location in inertial frame.
- To localize the users of a GNSS, several geometric methods and algebraic algorithms [Bancroft (1985), Kreuse (1987), Chaffee and Abel (1994), ...] has been developed in the past which are still in use.
- Relativistic positioning concepts has been recently implemented in an algorithm to obtain the Schwarzschild coordinates of a user from his emission coordinates,
- P. Delva, U. Kostić and A. C̆adez̆ Numerical modeling of a Global Navigation satellite System in a general relativistic framework Adv. Space Research (2010) arXiv:1005.0477[gr-qc]

Summary and comments

- In solving numerically the GNSS navigation equations, one usually pick out an approximate zero order solution.
- In flat space-time, the expression

$$
x=\gamma_{4}+y_{*}-\frac{y_{*}^{2} \chi}{\left(y_{*} \cdot \chi\right)+\hat{\epsilon} \sqrt{\left(y_{*} \cdot \chi\right)^{2}-y_{*}^{2} \chi^{2}}}
$$

is the covariant solution of the location problem. For weak gravitational fields it provides the exact non-perturbed zero order solution.

- A numerical analysis of this solution has been accomplished by N. Puchades and D. Sáez (see Puchades's talk that follows).

