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Abstract

We study the behaviour of the parameter ω(z) of the equation of
state, p = ω(z)ρ, as function of the redshift data from GRBs, to
check its deviations from its most accepted value of -1.

To this end we first find a reasonable calibration for the GRB in
order to extract the luminosity distance dL as a function of the
redshift. Then we proceed to calculate the Hubble function H(z) to
obtain ω(z).
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The model with FRW spacetime

Our starting point are the well-known Friedmann equations for a
homogeneous and isotropic universe,

H2(a) =

(
ȧ

a

)2

=
∑

i

8πG

3
ρi (a), k = 0 (1)

ä

a
= −4πG

3
(ρi + 3pi ), (2)

Here the diferent matter components labelled i , are all isotropic
perfect fluids. We note from (2) that a component i can induce
accelerated expansion provided ρi + 3pi < 0.
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To fit with the supernovae redshift observations Eq. (1), demands
another component besides the dust that models barionic matter,
even if a non-zero curvature is assumed.

One possible solution to this puzzle is to modify the right hand
side of the Friedmann equation introducing a new form of “dark”
energy component, ρ(a) = ρm(a) + ρX (a), with equation of state

ω(z) =
pX (z)

ρX (z)
. (3)
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ω(z) parameter of the dark energy EoS

The parameter ω(z) determines not only the gravitational
properties of dark energy but also its evolution. This evolution is
easily obtained from the energy momentum conservation

d(ρXa3) = −pXd(a3), (4)

which leads to

ρX = ρ0X e3
R z

0
dz′

1+z′ (1+ω(z ′)), (5)
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From previous equation we see that the determination of ω(z) is
equivalent to that of ρX (z) which in turn is related to the Hubble
parameter H(z), that from the first Friedmann equation and using
(5) can be expressed as

H(z)2 = H0(z)2[Ω0m(1 + z)3 + Ω0X e3
R 3

0
dz′

1+z′ (1+ω(z ′))]. (6)

Thus, the knowledge of Ω0m, z and H(z) suffices to determine
ω(z) which is obtained from the previous equation as

ω(z) =
2
3 (1 + z)d ln H

dz − 1

1− H2
0

H2 Ω0m(1 + z)3
. (7)

From observational data it is possible to extract dL(z) and then
determine H(z), since,

H(z) =

{
d

dz

(
dL(z)

1 + z

)}−1

. (8)
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Calibrating GRBs.

Based in the data of Type Ia Supernovae, Kodama et al. obtained
the next calibration to the luminosity distance

dL

1027cm
= 14,57z1,02 + 7,16z1,76. (9)

With Eq. (9) and the 69 GRBs observational data, we can use the
Eq. (8) and in this way infer if the dark energy effective EoS
parameter ω is close to -1 (cosmological constant).
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However with the Kodama calibration assuming
H0 = 70kms−1Mpc−1 and Ωm = 0,32, we obtained a plot for w(z)
that was physically unreasonable, diverging at certain redshift.

Figura: This figure shows how change the behavior of w(z) for z ≈ 1,
which indicates a kind of “phase change” in the dark energy fluid.

We tried to repair this inconsistency by finding out another
calibration for the GRBs extracted directly from Supernovae data.
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We found the empirical formula of the luminosity distance of Type Ia
supernovae from Riess et al. (2007) with 0,359 < z < 1,755 as

dL

1027cm
= 14,85z + 4,97z2. (10)

Figura: Luminosity distance as a function of the redshift of Type Ia
supernovae.

We do not assume any cosmological models at this stage, but simply

assume that the Type Ia supernovae are standard candles.
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The typical spectrum of the prompt emission of GRBs can be
expressed as exponentially connected broken power-law, so called
Band function. Then we can determine spectral peak energy Epeak ,
corresponding to the photon energy at maximum in νFν spectra.

There are two empirical relations that relate prompt emission
property with Epeak .

Epeak − Eγ relation is the first one found by L. Amati et al., which
connects Epeak with the isotropic equivalent energy Eγ .
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We apply the Eq. (10) to 16 GRBs with the redshift z < 1,755 in
our sample to obtain Eγ = 4πd2

LSbolo(1 + z)−1Fbeam, where Sbolo

is the bolometric fluence estimated in 1− 10000 keV energy range
in GRB rest frame and Fbeam is a beaming factor related with the
jet opening angle, while Epeak = (1 + z)Ep,obs .

In the figure we show the peak energy, Epeak , and the isotropic
energy, Eγ , of 16 GRBs with z < 1,755. The solid line is the
calibrated Amati relation given by,

Eγ
1052erg

= 3,41× 10−6

(
Epeak

1keV

)1,63

. (11)
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The calibrated Amati relation.

Figura: The peak energy (Epeak) and isotropic energy (Eγ) of 16 GRBs
with z < 1,755. The solid line is the calibrated Amati relation given by
Eq. (11).

Then, we apply this Amati relation to 26 GRBs with high redshifts,
z < 5,6, to determine the luminosity distance as a function of z.
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For each GRB with z = z i we have the observed Sbolo in the unit
of erg cm−2, the dimensionless Fbeam and the observed Ep,obs in
the unit of keV. Then, using the equation 11 and
Eγ = 4πd2

LSbolo(1 + z)−1Fbeam, the luminosity distance can be
derived as

dL(z i ) = 1023cm

√
3,41

4πF i
beamS i

bolo

(E i
p,obs)0,815(1 + z i )1,315. (12)

From here, usually it is tested a cosmological model

∆χ2 =
∑

i

(
logdL(z i )− logd th

L (z i ,Ωm,ΩΛ)

∆dL(z i )

)2

− χ2
best , (13)

where χ2
best means the chi-square value for the best fit parameter

set of Ωm and ΩΛ.
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With the Eq. (12) and the data of GRBs, we obtained the next
plot for the luminosity distance with 0,359 < z < 5,6,
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Figura: dL(z) from the luminosity distance derived with the Amati
relation.

and the empirical formula for the luminosity distance is

dL

1027cm
= 10,68z + 5,95z2 (14)
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Using this extracted rule for the luminosity distance as function of
z , Eq. (14) and using Eq. (7), we derived the dark-energy
equation-of-state parameter w(z)

Figura: w(z) parameter of the equation of state as a function of z,
derived from 26 subset of GRBs given in Schaefer and
H0 = 85,12kms−1Mpc−1, Ω0m = 0,32.
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The blows up of ω(z)

ω(z) =
2
3 (1 + z) d ln H

dz − 1

1− H2
0

H2 Ω0m(1 + z)3
, (15)

occur when H2(z) = H2
0 Ω0m(1 + z)3.

Note also that we use H0 = 85,12kms−1Mpc−1 because this value
is predicted by the Eqs. (8) and (14),

H(z) =

{
d

dz

(
dL(z)

1 + z

)}−1

=
(1 + z)2

0,012 + 0,013z + 0,007z2
. (16)

So,
H(z = 0) ≡ H0 = 85,12kms−1Mpc−1. (17)
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On the other hand, the deceleration parameter q(z) as function of
z is

−q(z) = 1− (1 + z)
H ′(z)

H(z)
=

0,007(0,108 + z)(1,892 + z)

0,012 + 0,013z + 0,007z2
, (18)

and at z = 0, we have that q(z = 0) = −0,114, in other words,
the universe is in acelerated expansion.
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Conclusions

The aim of this work is to determine the functional dependence of
the dark-energy equation-of-state parameter in terms of the redshift,
w(z), from observational data coming from the GRBs.

First we find the best calibration between the observational data of
GRBs, obtaining the luminosity distance as function of redshift,
dL(z), Eq. (14). Then we obtain the corresponding Hubble function
and then w(z).
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The estimations for H0 = 85,12kms−1Mpc−1 and
q(z = 0) = −0,114 have the correct order of magnitude.

To keep ω(z) finite, we have to use a very small value for Ω0m.

GRBs data by themselves are unable to strongly to constraint
cosmological parameters. GRBs should be used combined with other
data sets.

Qualitatively our results are in agreement with related works by
Kodama et al. (2009), Capozziello and Izzo (2009) and Samushia
and Ratra1 (2010).
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