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 Do we need a quantum theory of gravity? Gravity is the only 
fundamental physical interaction not (satisfactorily) quantized yet.

 General Relativity (GR) leads to singularities  where predictability breaks 
down. 

 Any quantum theory of gravity must have the infrared behavior of GR. 
Explaining why the Universe is so classical is a challenge.

  Quantum phenomena may open a window to new physics. 

 Geometrodynamics in the Wheeler-De Witt approach is not a valid answer.

 Loop Quantum Gravity (LQG)  is a nonperturbative, diffeomorphism 
invariant and background independent quantum theory of gravity. 

 Its application to simple cosmological models gives rise to Loop Quantum 
Cosmology (LQC).

 Introduction                                                                                        



  Consider globally hyperbolic spacetimes.                                                            
    In geometrodynamics,  the  inital  data  
    are contained in the induced 3-metric  
    and the extrinsic curvature.

     We  can  introduce  triads  to  allow                    
    coupling with fermions.  A canonical      
    set is formed by the  densitized triad  
    and the triadic extrinsic curvature.

 We  can  replace  the  extrinsic  curvature by a  connection  valued           
 1-form which takes values on su(2). 
Classically, this Ashtekar-Barbero connection is                                        
    is the Immirzi parameter. 
      is the su(2)-connection compatible with the co-triad.

 A canonical set is                                                        (modulo                )
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 Canonical GR                                                                                     
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  The gauge invariant information about the connection is captured by the 
Wilson loops. We replace the connection by  SU(2)-holonomies  along 
(piecewise analytic) edges. 

This involves a 1-dimensional smearing.                    are the Pauli matrices.

 We also smear the vector density     without introducing any background 
dependence. This leads naturally to FLUXES through surfaces.

 Holonomies and fluxes form an algebra  under Poisson brackets.   
Quantization requires the representation of this algebra.

 Gravity is a constrained system: Gauss [SU(2)], Diffeomorphisms, and 
Hamiltonian or scalar constraints.
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Holonomy-flux algebra                                                                    
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            There exists a UNIQUE cyclic representation of the holonomy-flux            
 algebra with diffeomorphism-invariant (“vacuum”) state. 

 We call cylindrical the functions that depend on the connection only via the 
holonomies along a finite number of edges (forming a graph). 
Completing this algebra of functions with respect to the norm of the 
supremum, we obtain a commutative C*-algebra with identity.

 This algebra is (isomorphic to) the algebra of continuous functions on a 
compact space, called the spectrum. Smooth connections are dense.

 The Hilbert space of the representation is that of square integrable functions 
on the spectrum with respect to a diffeomorphism-invariant  measure: The 
Ashtekar-Lewandowski measure.
 
  The connection cannot be defined as an operator valued distribution. 
  The representation is NOT EQUIVALENT to a standard one.
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LOST theorem                                                                                    



 Geometry is discrete        



  Let us apply these quantization techniques to homogeneous and isotropic 
flat (FRW) cosmologies. We include a massless minimally coupled scalar field.

  We introduce a fiducial triad         and an integration cell adapted to it.  
    We call       its fiducial volume. 

  Physical results are independent of these choices. 

  One can fix the gauge and diffeomorphism freedom so that 

  The variables        describe the geometry degrees of freedom and are 
canonical. 

  Their (classical) relation with the scale factor is  
7

 LQC: Flat FRW model                                                    
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1 /3 ȧ , ∣p∣=V 0

2 /3 a2 .



  It suffices to consider holonomies along (fiducial) straight edges. 

Triads are now smeared accross squares. Fluxes are totally determined by

 The configuration algebra is the linear space of continuous  and bounded 
complex functions in     

Its completion is the Bohr C*-algebra of almost periodic functions.          
Its spectrum is the Bohr compactification of the real line, 

 This compactification can be seen as the set of group homomorphisms from 
the group     (with the sum) to the multiplicative group      of unitaries in 

 The real line is dense.    

 

e .
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LQC: Holonomies, fluxes and Bohr compactification              
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  Since the group            is compact, it has an invariant Haar measure.  

 The functions on            consisting in the EVALUATION at a real point       
form an orthonormal basis. We designate each element with the ket 

 Calling                        the “momentum” representation is given by 

 The Hilbert space is nonseparable, but states differ from zero only on a 
countable subset of the real line. 

 The representation fails to be continuous. The connection operator does not 
exist. The representation is INEQUIVALENT to the Wheeler-De Witt one.9

LQC: Momentum representation                                               
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  The triad  diverges at the Big-Bang,

 Since      has a point real spectrum,          is not well defined.          
But it is possible to define a triad in terms of elementary operators. 

 Classically,  

             

 The operator is diagonal in this  basis. 

  It is bounded from above.

  The classical divergence disappears.10

LQC: Triad operator                                                                   
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  We define the curvature operator using a square loop of holonomies: 

One cannot take the limit of zero regulator      This introduces a nonlocality.

 In LQG, the area spectrum  has a minimum non-zero eigenvalue        
The  regulator is fixed so that the physical area of the square coincides              
with this area gap. It is state-dependent. 

  We relabel the      -basis as a basis of               
  volume  eigenstates,  introducing  an 

   affine parameter for the “translations”             
  generated by

 

    The physical volume of the fiducial cell is11

LQC: Curvature operator                                                           

F ab
k =−2 lim trace  h[ij ]−1


2 V 0

2/3 k 0 ea
i 0 eb

j , h[ij ]:=h 0 ei
h 0 e j

h 0 e i

−1h 0 e j

−1 .

 .

 .

2∣p∣= .

∣ 〉

c/2:

v=[2G ]−1 sign  p ∣p∣3/2 N ∣v 〉 :=∣v1 〉 .

V=∣p∣3/2 .



  We use the standard Schrödinger representation for the matter field         
The Hilbert space is the tensor product of the polymeric one and                        

 One gets the Hamiltonian constraint (with a suitable factor ordering):  

 This constraint leaves invariant the zero-volume state and its orthogonal 
complement.  The classical singularity is removed from the Hilbert space! 

 The action of        is 

where the real function                             has the remarkable property that it
  vanishes in the whole interval 
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LQC: Hamiltonian constraint                                                     
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        preserves the semilattices                                                    with     in (0,4]. 
         

 Each semilattice provides a superselection sector. 
On it,         has a nondegenerate absolutely continous spectrum equal to

       can be seen as a second-order difference operator. But its eigenfunctions 
are entirely determined by their value at       It is a No-Boundary prescription.

 These eigenfunctions              are REAL (up to a global phase).

  Solutions to the constraint                     have the form
 

Physical states are (e.g.) positive frequency solutions in 13

LQC: Superselection and states                                                  
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  A complete set of Dirac observables is given by        and          the latter 
being defined by the action of        when the field is

  Consider (Gaussian-like) positive frequency states peaked at certain values   
                  and            for a fixed                

   
   We study “semiclassical”                (Ashtekar, Pawlowski & Singh)             
  states with 

 The Big Bang is replaced             
  by a quantum bounce:
                                           

              The Big Bounce

14

LQC: Big Bounce                                                                          
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  (Martín-Benito, Mena Marugán & Olmedo)

LQC: Big Bounce                                                                               



LQC: Big Bounce                                                                               



  Semiclassical states remain peaked.

 The trajectory deviates from GR when                                   
 The scale for the onset of corrections is universal:

  In this regime, gravity behaves as a repulsive force.

  The matter density is BOUNDED by          in the trajectories of the peaks.      
  This bound coincides with the supremum of the density operator.   

 The  trajectory  matches  an  EFFECTIVE   DYNAMICS,  derived  with         
  techniques of geometric quantum mechanics (Taveras). 

 The volume at the bounce scales with          and can be as large as desired.       
  It does not control the emergence of quantum phenomena.
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LQC: Big Bounce                                                                          
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The eigenfunctions of the gravitational constraint are REAL:The eigenfunctions of the gravitational constraint are REAL:
The ingoing and outgoing components have equal amplitude.The ingoing and outgoing components have equal amplitude.
(Martín-Benito, Mena Marugán & Olmedo. Also Ashtekar, Corichi & Singh (Martín-Benito, Mena Marugán & Olmedo. Also Ashtekar, Corichi & Singh 
for one superselection sector)for one superselection sector)

Generality of the bounceGenerality of the bounce



   Using the effective equations, one can show that all strong singularities (à la 
Królak) are RESOLVED in flat FRW for any kind of matter content.      
Only Type II and Type IV singularities may remain (Singh).

 Similar results about the bounce in other isotropic models:  

  Flat FRW with negative cosmological constant
  (Bentivegna & Pawlowski).

 Closed FRW  (Ashtekar, Pawlowski, Singh, Vandersloot...). 

 Open FRW (Vandersloot. Ashtekar & Wilson-Ewing).

 Flat FRW with positive cosmological constant (Ashtekar & Pawlowski):
Solutions reach infinity at finite emergent time     and can be continued.
The constraint has different self-adjoint extensions (same physics).
There is an upper bound for the cosmological constant.

  The critical density acquires the same value.                                               19

LQC: Generality of the bounce                                                   



Also Big Crunch, 
like in GR.



   Flat FRW with positive cosmological constant (Pawlowski).                              
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LQC: Generality of the bounce                                                   



  LQC has been implemented successfully in anisotropic models:

 Bianchi II (Ashtekar & Wilson-Ewing).
 Bianchi IX (Wilson-Ewing).
 Bianchi I (Chiou. Martín-Benito, Mena Marugán & Pawlowski. Ashtekar & Wilson-Ewing...).

  Numerical  simulations confirm the “Bounce”. Together with the BKL 
conjecture, this suggests a generic resolution of spacelike singularities.           

 Bianchi I has been studied with an improved dynamics motivated from LQG:

 The “basic” holonomies produce a CONSTANT shift in the volume.

 Data on the first section of constant volume determine the solution.             
 This allows one to solve the constraint and get the Hilbert space of physical     
 states. This is so even in VACUO (M-B, MM, W-E). 

 The superselection sectors for the anisotropies are discrete, but  DENSE.         
 Different triad orientations are not mixed  (M-B, MM, W-E).                21

LQC: Anisotropic models                                                            



  The effective equations for the improved dynamics in Bianchi I guarantee 
that  the  directional Hubble rates                     the  expansion and the  shear 
scalar (of comoving observers) are bounded from above (Corichi & Singh).

  Occasionally effective equations have been misused. Wrong statements are:   

 In flat FRW, if the evolution leads to a vanishing or a divergent value of the 
scale factor then the universe is asymptotically de Sitter in that regime (Singh).   
The mistake comes from the fact that the convergence of                                   
does not require                    Also, one can have                    (David Jaramillo).

 Since the [effective] phase space function that represents expansion [or 
shear] is bounded [unbounded], the corresponding operator in the quantum 
theory will have a bounded [unbounded] spectrum (Corichi & Singh).         
This is not true for functions that depend on noncommuting variables.

 In an effective treatment [including all quantum moments], we can … focus 
on the algebra of observables. Results will thus be manifestly representation 
independent (Bojowald & Tsobanjan).         
This involves assumptions that are not satisfied, e.g., with superselection.22

LQC: Effective analyses                                                               
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  Consider flat FRW with an inflaton field whose kinetic energy is positive.    
  The EFFECTIVE equations imply:

 The Hubble parameter is bounded from above.

 When the potential is bounded from below (e.g.         ), the time derivatives 
of the inflaton and the Hubble rate are bounded from above in norm             

 For potentials of  the  field                           
 unboundedly large at infinity,             
 there exists an upper bound               
 on the value of the inflaton.

 There  exists  a  phase  of                           
 superinflation  (Bojowald,                           
 Singh) after the bounce.

 This superinflation does not             
 yield sufficient e-foldings.

                                                     (Ashtekar)23

LQC: Superinflation                                                                    
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  Let us study the inflationary potential             with a mass of the order of 10-7  
  in Planck units (Ashtekar & Sloan).  

  For standard initial conditions, the quantum corrections to GR at the onset of  
  inflation are of a relative order  10-11  or less. 

  We can calculate the probability that there are more than 68 e-foldings.         
  Starting with equiprobability for the unconstrained initial data, we get on the  
  constraint surface (and gauge section of the bounce) the Liouville measure:

                is bounded, because the potential grows unboundedly.

             is the fraction of the matter density in the potential at the bounce.

  If                                the superinflation phase provides the desired number of 
  e-foldings or initial conditions to have a sufficiently long slow-roll inflation.

  For this range  of                the relative probability is greater than 0.99.24

LQC: Slow-roll inflation                                                              

m22 ,

d L∝1−F Bounce d Bounce dvBounce .

F Bounce

F Bounce1.4 10−11

∣bounce∣

F Bounce ,



LQC: Inhomogeneities?                                                                   



  HYBRID APPROACH (Garay, Martín-Benito, Mena Marugán, Martín-De Blas): 

 Loop quantization of the homogenous degrees of freedom of the geometry.

 Fock quantization of matter fields and inhomogeneous gravitational waves.

 One assumes a hierarchy in the relevance of quantum geometry phenomena.

 There are recent results about the choice of a UNIQUE Fock quantization in 
cosmological scenarios (Cortez, Mena Marugán, Olmedo, Serôdio & Velhinho...).

 Systems in this category are GOWDY cosmologies (with different topologies 
and possibly scalar fields), and fields and perturbations around closed FRW. 

  One reaches a kinematical RESOLUTION of the cosmological singularity.

  The quantization has been COMPLETED.

 On physical states one RECOVERS the Fock space for inhomogeneities.26

LQC: Inhomogenous models                                                       
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 For hybrid Gowdy (with T3 topology) we have studied the effective dynamics. 
  The homogenous background is a Bianchi I Universe.               
  The prescription for improved dynamics has scaling problems, though.              
  (Brizuela, Mena Marugán & Pawlowski). 

   The  numerical analysis confirms 
     the bounce in all three directions.
    The bounce happens  typically at
        's  which are at least 13% those
     found without inhomogeneities. 
     

                                                                              and      are constants of motion. 

 Hybrid Gowdy: Effective dynamics and Big Bounce               
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  We have studied the change in the amplitudes of the  inhomogeneous modes 
  (describing linearly polarized gravitational waves) between the two asymptotic 
  regions corresponding to contracting and expanding universes.

  We have taken an statistical average, disregarding phases.

  In the sector where the inhomogeneities dominate the bounce dynamics, the 
    change in the amplitudes is antisymmetric with respect to their phase.

   Then, the amplitudes are statistically preserved through the bounce.

  In the sector where the vacuum dynamics is approximately valid around the  
    bounce, the change is positive in average. 

   Hence, the bounce pumps energy into the inhomogeneities.

  Although the scenario is not  completely  physical, the behavior may indicate 
    a LQC mechanism to remove low amplitudes. 
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Gowdy: Big Bounce and inhomogeneities                                  
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 Other  approaches  to  deal  with  inhomogeneities  have  been  developed  by   
    Rovelli & Vidoto and by Bojowald et al.  

 LQC allows  one a rigorous control  on  the  mathematical and  interpretational 
    aspects of cosmology.

 LQC has opened new views to the quantum phenomena of the Early Universe:

 Resolves the Big Bang singularity
 Leads to a Big Bounce that respects “semiclassicality”.
 Renders inflation a natural process.
 Provides a new setting to discuss initial conditions for the inhomogeneities.
 Might remove low amplitudes from the inhomogeneities.

 Further research should deal with inflation, inhomogeneities and perturbations.

 Many others have contributed to LQC  (Lewandowski, Kaminski, Banerjee,  
Date,  Khanna, Hossain,  Shankaranarayaran, Szulc, Varadarajan, Yongge Ma...)

 Concluding remarks                                                                        
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