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The current Universe is undergoing a period of accelerating expansion
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It seems even possible that w<-1: phantom energy.

•Phantom thermodynamics: 0<phT
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It seems even possible that w<-1: phantom energy.

•Phantom thermodynamics: 0<phT

•Wormholes must be supported by some kind 
of “exotic matter”, characterized by violating 
the null energy condition, in order to be 
traversable.

It has been shown that an inhomogeneous version of 
phantom energy can be the exotic stuff which is required 
to support wormholes.



•Babichev et al. used a test-fluid approach to 
study the evolution of the horizon area of a 
Schwarzschild black hole induced by the 
accretion of dark energy, obtaining  
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dM 24
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•That procedure applied to Morris-Thorne wormholes leads

( )ρπ +−= pQm
dt
dm 24 with     a positive 

constant.
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:,4 AAr π= area of the spheres of symmetry
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Trapping horizon: hypersurface foliated by marginal spheres.
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•Thermal radiation for dynamical black holes:
π
κ
2

=HT

•In a spherically symmetric spacetime, one can intruduce the Kodama vector

( )+−−+
−+ ∂∂−∂∂−=⇒= rrgkrk 2curl

with bba
a kkk κ=∇ ][  on a trapping horizon.
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•Wormholes must be characterized by past outer trapping horizons in order to 
recover the results obtained following the accretion method.

Both methods seems to describe just the 
same process, which is originated from a flow 
of the surrounding material into the hole.

⇓
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A traversable wormhole possesses a classically allowed trajectory.

The existence of a trapping horizon (with ) opens the possibility for 
an additional quantum traversing phenomenon through the wormhole.

0≠κ

The tunneling probability along a classically forbidden trajectory can 
be considered.

Γ



A traversable wormhole possesses a classically allowed trajectory.

The existence of a trapping horizon (with            ) opens the possibility for 
an additional quantum traversing phenomenon through the wormhole.

0≠κ

0
2

<−=
π
κ

HT

Wormholes radiate matter of the same kind as their 
surrounding material: phantom energy.

The tunneling probability      along a classically forbidden trajectory can 
be considered.

Γ

Considering a massless 
scalar field, it can be seen 
that     has a thermal form,

, with

Γ
( )HT/exp φω−∝Γ
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•First law: the change in the gravitational energy of the wormhole is 
equal to the sum of the energy removed from the wormhole and the 
work done in the wormhole.

•Second law: the entropy of a wormhole, which is given in terms of the 
throat surface area, can never decrease, when placed in its most 
natural dominant-energy-condition violating environment.

•Third law: it is impossible to reach the absolute zero for surface 
gravity by means of any dynamical process.

THERMODYNAMIC LAWS FOR WORMHOLES
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•First law: the change in the gravitational energy of the wormhole is 
equal to the sum of the energy removed from the wormhole and the 
work done in the wormhole.

•Second law: the entropy of a wormhole, which is given in terms of the 
throat surface area, can never decrease, when placed in its most 
natural dominant-energy-condition violating environment.

•Third law: it is impossible to reach the absolute zero for surface 
gravity by means of any dynamical process.

THERMODYNAMIC LAWS FOR WORMHOLES

If any hypothetical process would be able to change the surface gravity to be 
zero, then the outer horizon would converts into degenerate.



Conclusions and further comments
•Wormholes posses a well-defined thermodynamics.

•Wormholes thermally radiate phantom energy.

•The radiation process would produce a decrease of the wormhole size, 
decreasing the wormhole entropy too. This violation of the second law is only 
apparent, because is the total entropy of the universe what should increase.

•The initial conditions in the action integral could be chosen in such a way 
that the wormhole would radiate ordinary matter increasing its size in the 
process. But, if that case would be possible, the thermal radiation would be 
always thermodynamically forbidden in front of the accretion entropicaly 
favored process.

•Although this study is a crucial step in the development of wormhole 
thermodynamics, a lot of work is still necessary to understand some 
ambiguities of the used method.
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