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José M. Mart́ın-Garćıa
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(next month at Wolfram Research, Champaign)

ERE2010, Granada, September 10, 2010



Summary

Linking MathRel and NumRel?

Critical phenomena in gravitational collapse
Christodoulou
Choptuik
The current model
Interesting results

Conclusions and open questions



Summary

Linking MathRel and NumRel?

Critical phenomena in gravitational collapse
Christodoulou
Choptuik
The current model
Interesting results

Conclusions and open questions



Tension between MathRel and NumRel

I It is tension between exact and finite precision results.

I No correlation with computations by hand vs. by computer:

I Approximation by hand: e.g. perturbation theory.
I Exact computations by computer: computer algebra.

I Computers are discrete-computation machines.

I GR is a differential system. No analytic general solution.

I Two approximation steps:

I Discretization: Approximate continuous model by discrete
model. Many methods, with parameters. Worse than original.

I Finite precision numbers: information loss in basic operations.
Example:

x2 − 2(1± ε)x + (1± ε) = 0, ⇒ x = 1±
√

3ε
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What is the best we can do?
Computer algebra to drive computations using mathematical language.

1. Formalism:

1.1 Abstract computations.
1.2 Frame/chart computations.
1.3 PDE system. Gauge and initial/boundary conditions.
1.4 Study hyperbolicity properties. Constraint stability.

2. Discretization:

2.1 Choose method (both eqs and bc’s) and its parameters.
2.2 Check consistency.
2.3 Study stability properties.

3. Execution:

3.1 Choose precision, and keep track of it.
3.2 Analysis of results.

Kranc (Husa, Hinder, Lechner)
RNPL (Marsa, Choptuik)
Cactus, Einstein Toolkit (AEI & LSU)
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xAct

I Manifolds, vector bundles, tensors, connections, metrics.

I Frames, charts.

I Abstract indices vs. frame indices. 100 indices in seconds.

I Modules for spinors (Garćıa-Parrado, M-G), perturbation theory
(Brizuela, M-G, Mena Marugán), Riemann scalars (M-G, Yllanes,
Portugal), ...

I Some applications:
I Super-energy tensors (Garćıa-Parrado)
I Cosmological perturbation theory (Pitrou)
I Hyperbolicity of Einstein eqs (Gundlach, M-G)
I PostNewtonian computations (Faye et al)
I Heat-kernel expansions (Wardell et al)
I Geometric invariants (Backdahl, Valiente Kroon) [prev talk]
I IVP on light-cones (Choquet-Bruhat, Chruściel, M-G)
I QFT, string theory, ...

I http://www.xAct.es
http://groups.google.com/group/xAct
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Motivation from mathematics

I Nonlinear stability of Minkowski in vacuum GR. (Ex: ẏ(t) = y(t)2).

I Cosmic censorship: is it possible to form a naked (visible to far
observers) singularity starting from smooth initial conditions in a
self-gravitating system which is regular without gravity?

I Christodoulou:
I Address problems in simpler setting: 3+1 spherical symmetry.
I Add massless real scalar field φ(t, r), obeying Klein-Gordon eq.
I Results (CMP’86):

I Small finite data ⇒ Minkowski is stable.
I Large data ⇒ Schwarzschild end state.
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MathRel → NumRel

I General question: What happens in between?
Naked singularity?

I Particular question (1987): is it possible to
form arbitrarily small black holes?

M ∝ RBH , curvature at surface ∝ 1

R2
BH

I Intuition: need for self-similarity near the centre (cf. Ori & Piran
PRL’87):

φ(t, r) = f (−t/r) + κ log(−t)

I Goldwirth and Piran, PRD’87:

We present a numerical study of the gravitational collapse of a
massless scalar field. We calculate the future evolution of new initial
data, suggested by Christodoulou, and we show that in spite of the
original expectations these data lead only to singularities engulfed
by an event horizon.
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Choptuik

I 1982–1986 (PhD): scalar field spherical
collapse code. Cauchy, fully constrained.

I 1987–1991: Improve accuracy and
convergence: adaptive mesh refinement and
Richardson extrapolation.

I Choptuik, Goldwirth and Piran CQG’92: compare codes

[CA≡ Cauchy (Choptuik’s code). CH≡ Characteristic (GP’s code).]

... although the levels of error in the CA and CH results at a given
resolution were quite comparable at early retarded times (...), the
CA values were significantly more accurate than the CH data once
the pulse of scalar field had reached r = 0.
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Choptuik’s setup

I The system:

ds2 = −α2(t, r)dt2 + a2(t, r)dr 2 + r 2dΩ2, Φ ≡ φ′, Π ≡ aφ̇/α

Φ̇ =
(α

a
Π
)′
, Π̇ =

1

r 2

(
r 2α

a
Φ
)′
,

α′

α
=

a′

a
+

a2 − 1

r
= 2πr(Π2+Φ2).

I One-parameter (p) families of initial conditions with the property:

I Small p leads to no BH formation (small finite data).

I Large p produces a BH (large data).

Example (pure ingoing):

φ(0, r) = φ0 r 3 exp (−[(r − r0)/δ]q)

p = φ0, r0, δ, q

∆

q

Φ
r

0 2 4 6 8 10
0

5

10

15
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NumRel → MathRel

Bisection in p (prec ∼ 10−15) to BH formation threshold. He found
(PRL’93):

I Sharp p∗ separating BH formation from dispersal (threshold is not
fractal).

I It is possible to form arbitrarily small BHs.

I Scaling: MBH(p) ∝ (p − p∗)γ for p & p∗.

I Oscillations accumulate at (r = 0, t = 0).

I Discrete self-similarity: φ(t, r) ≈ φ(t/e∆, r/e∆)

I Universality: γ ≈ 0.37, ∆ ≈ 3.44,
same profile φ∗(t, r) for all families.

Conjecture: φ∗ exact solution with high symmetry and attractive
properties.

Comment: Self-similarity is dynamically found, but in a more general
(DSS) form!
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Other results

Independent confirmations:

I Gundlach (PRL’95): φ∗ as solution of eigenvalue problem.

I Hamadé & Stewart (CQG’96): higher precision collapse. Naked!

Phenomenology confirmed in more than 20 other systems:

I Abrahams & Evans (PRL’93): axisymmetric vacuum (DSS).

I Evans & Coleman (PRL’94): perfect fluid, p = ρ/3 (CSS).

I Choptuik, Chmaj & Bizoń (PRL’96): SU(2) Yang-Mills (DSS).

I Liebling & Choptuik (PRL’96): Brans-Dicke (CSS/DSS).

I Proca, Dirac, sigma fields, ..., Vlasov(?)

I With/without mass, charge, conformal couplings, ...

I Different equations of state for fluids.

I Other dimensions.
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I With/without mass, charge, conformal couplings, ...

I Different equations of state for fluids.

I Other dimensions.
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Minkowski is nonlinearly
stable.

I Christodoulou (AM’94):
Naked singularities in
scalar field collapse.
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They are unstable!

I Cosmic censorship is
modified: no stable naked
singularities.
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Geometry of self-similarity

I CSS: Homothetic Killing vector ξa:

Lξ gab = −2 gab

I In spherical symmetry, define
adapted coordinates:

x ≡ r
−t , τ ≡ − log −t

t0

I Then any metric is:

e−2τ
(
Adτ 2 + 2Bdτdx + Cdx2 + FdΩ2

)
with ξ = ∂τ .

I CSS: A,B,C ,F functions of
x only.
DSS: also periodic in τ , period ∆.

point
singularity

center
regular

past light cone 
    of the singularity

Cauchy
horizon

identify

of the singularity
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GR as a dynamical system
(Evans & Coleman PRL’94; Koike, Hara& Adachi PRL’95; Gundlach
PRD’97)

I State S ≡ {γ,K ,Ψ}. Ṡ = F [S ] with some initial S(0) = S0.

I Evolution in (∞-dim) phase space:

       curve

solution
subcritical

solution
supercritical

p>p*

p<p* of initial data

CRITICAL 
SURFACE

Minkowski

Choptuik

Schwarzschild(M)

I Open questions:
I Which functional space? Asymptotic properties of the

spacetimes.
I Which foliations? Which coordinates?
I Meaning of “attraction”?
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I For any system in GR:

I Find global attractors of evolution: Minkowski, stars, black
holes.

I Restrict to the boundaries among basins of attractors.
I Find attractors on the boundaries (“critical solutions”).

I

Critical Phenomena ≡ Study of basin boundaries in GR phase space.

I Same mathematical ideas and techniques used in Statistical
Mechanics. We believe there is no physical connection.

I Attraction ⇒ Forget initial details ⇒ Highly symmetric solutions:

I Spherical or axisymmetric
I Static (“type I”) or self-similar (“type II”). Both continuous or

discrete.
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1. Massless scalar field

Perturbative results:

I M-G & Gundlach PRD’99 : All nonspherical
perturbations of the Choptuik spacetime decay. Slowest
decaying mode is l = 2 polar, with
λ = -0.019(2)+ i 0.55(9).

I Garfinkle, Gundlach & M-G PRD’99 : Conjectured
scaling law for angular momentum, exponent 0.762(2).

I (Gundlach & M-G PRD’96 : Conjectured charge
scaling, exponent 0.884(1), confirmed by Hod & Piran
PRD’96.)

Non-linear results:

I Choptuik et al PRD’03, axisymmetry: unstable l = 2
polar mode, exponent 0.1–0.4. Critical solution
cascade.

I Choptuik et al PRL’04: ansatz
φ(t, ρ, z , φ) = e imφψ(t, ρ, z). DSS criticality. Isolated
m sectors. Which unstable?
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2. Fluids

Perturbative results:

I Gundlach PRD’01, CSS p = kρ :

I k < 1/9 (analytical): l = 1 axial unstable (ballerina effect).
I 1/9 < k <0.49: stable nonspherical modes.
I k >0.49: many unstable polar modes.
I Note: spherically-stable naked singularity for k <0.01 (Harada

& Maeda PRD’03, Snajdr CQG’06).

Non-linear results:

I Jin & Suen PRL’07: BH threshold in
neutron stars head-on collision.

I Signs of type I criticality.
I Critical solution: oscillating

spherical neutron star, probably
a perturbed unstable TOV star
(Noble & Choptuik ’08).
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3. Glancing BH collisions

Pretorius & Khurana CQG’07:

I Equal mass BHs. Fine tune
boost.

I N circular orbits before merging
or dispersing.

I eN ∝ (p − p∗)−γ ,
with γ ≈ 0.31− 0.38

I 1.5% total energy radiated per
orbit.

I max N limited by kinetic energy
available.

I Self-similar criticality for zero
mass BHs?
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4. Global structures for a self-similar spacetime

I Recall structure e−2τgµν(x). Central singularity at τ =∞.

I Self-similarity horizons: null homothetic lines.

I Building blocks: fan and splash (Gundlach & M-G PRD’03)

I Example:
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5. High precision numerical Choptuik spacetime

M-G & Gundlach PRD’03

I Three regions

I Psedospectral code. Fourier in τ ;
4th order FD in x .
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Inner patch: Impose DSS and regularity at centre and past light cone.

∆ = 3.445 452 402(3)
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6. Global structure of the Choptuik spacetime

I Oscillations pile up at the Cauchy Horizon, but decay.

I Curvature is continuous but non-differentiable. Continuation not
unique: one free function (radiation from the singularity).

I Unique DSS continuation with regular center (nearly flat):
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All other continuations produce a negative mass singularity at the centre,
with no new self-similarity horizon:



7. Vacuum collapse in 4+1

Bizoń et al PRD’05, PRL’05, PRL’06

I Gravitational waves in spherical symmetry.

I Take

ds2 = −Ae−2δdt2 + A−1dr 2 +
r 2

4

[
e2Bσ2

1 + e2Cσ2
2 + e−2(B+C)σ2

3

]
σ1 + i σ2 = e iψ(cos θ dφ+ i dθ), σ3 = dψ − sin θ dφ

I Triaxial symmetry: exchange of the σi . 6-copy solutions.
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8. Chaos on the critical surface
(Same system) Szybka & Chmaj PRL’08

I Quadruple precision (32 digits) to fine tune two modes.

I Chaotic evolution within the critical surface: which of three DSS
end-state? Reported fractal dim 0.68–0.72.

I κ-family of ICs. Possible end-states h = 1, 1/2,−2 or 0 (unknown).
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Conclusions and open questions

I Computer algebra to close the gap between MathRel and NumRel.

I xAct: efficient tensor computer algebra.

I “Easy” to form a naked singularity: fine tune to BH threshold.

I Process controlled by an exact solution.

I Route to visible regions with arbitrarily high curvature.

I First qualitative pictures of GR phase space. Chaos.

I Numerical Relativity can add new physics to mainstream GR.
Importance of very high precision numerics.

I Dynamical understanding of the process missing. Why DSS?

I What happens outside spherical symmetry? Angular momentum?

I Relation with Christodoulou ’94 ’99?

I Show existence of the Choptuik spacetime.

I Can we approximate critical exponents analytically? Holography?

Gundlach & M-G, Living Reviews Relativity 2007, updated 2010.
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