Quantum Gowdy Model within the new LQC Improved Dynamics

Mercedes Martín-Benito

In collaboration with Luis J. Garay and Guillermo A. Mena Marugán

Instituto de Estructura de la Materia, CSIC, Spain

ERE2010

September 2010

Motivation

- Introduction of inhomogeneities in Loop Quantum Cosmology
- Gowdy T^3 model with linearly polarized gravitational waves: simplest case
- Simplest possibility: hybrid quantization
 - Loop quantization for the homogeneous sector (zero modes = d.o.f. of Bianchi I)
 - Fock quantization for the inhomogeneities
- This approach explores the effects on quantum geometry on the homogeneous gravitational sector
- It may suffice to cure the classical initial singularity

Gowdy T^3 model with linear polarization

 Vacuum spacetime, with 3-torus spatial topology and two hypersurface orthogonal spatial Killing fields (∂_σ, ∂_δ)

Coordinates $(t, \theta, \sigma, \delta)$, with $\theta, \sigma, \delta \in S^1$

Metric components: functions of (t, θ)

Reduced phase space

- Homogeneous sector: Bianchi I phase space
- Inhomogeneous sector: nonzero modes of a field and its momentum

Remaining global constraints

- Generator of S¹ translations: C_θ = 0
 (It only involves the inhomogeneous sector)
- Zero-mode of the Hamiltonian constraint:

$$C_{\rm G}=C_{\rm BI}+C_{\xi}=0$$

 $C_{\rm BI}:$ Hamiltonian constraint of the Bianchi I model

 C_{ξ} : coupling term

It involves an interaction term $H_{\rm int}$ which creates and annihilates pairs of particles

Inhomogeneous sector: Fock quantization

• Variables associated with the free massless scalar field

$$a_m, a_m^* \to \hat{a}_m, \hat{a}_m^\dagger$$

Unique Fock quantization with unitary dynamics and a natural unitary implementation of the remaining gauge group of S^1 -translations

• Generator of S^1 -translations: \widehat{C}_{θ}

Defined on *n*-particle states: $|\mathfrak{n}\rangle := |..., n_{-2}, n_{-1}, n_1, n_2, ...\rangle$. The *n*-particle states annihilated by \widehat{C}_{θ} provide a basis for a proper Fock subspace \mathcal{F}_p .

Homogeneous sector: Loop quantization

• Bianchi I phase space in Ashtekar formalism:

$$\{c_i, p_j\} = 8\pi G\gamma \delta_{ij}, \qquad i, j = \theta, \sigma, \delta$$

• Configuration algebra: generated by holonomies matrix elements

$$\mathcal{N}_{\mu_j}(c_j) = \exp\left(\frac{i}{2}\mu_j c_j\right) := |\mu_j\rangle$$

 $\mu_j \sim {\rm coordinate}$ length of the holonomy in the $j{\rm -direction}.$

- Homogeneous sector of the kinematical Hilbert space: closure w.r.t the **discrete inner product** for each fiducial direction
- Basic operators: $\hat{p}_i |\mu_i\rangle \propto \mu_i |\mu_i\rangle$, $\hat{\mathcal{N}}_{\mu'_i} |\mu_i\rangle = |\mu_i + \mu'_i\rangle$

Improved dynamics prescription

- New scheme for anisotropic situations: Minimum fiducial length of the holonomies: $\bar{\mu}_i = \sqrt{\frac{|p_i|\Delta}{|p_ip_k|}}$
 - ▶ Requirement: the exponents of the holonomy elements N_{µi}(c_i) have a fixed constant Poisson bracket with the variable

$$v := \operatorname{sgn}(p_{\theta}p_{\sigma}p_{\delta}) rac{\sqrt{|p_{ heta}p_{\sigma}p_{\delta}|}}{2\pi\gamma l_{\mathsf{Pl}}^2\sqrt{\Delta}}, \quad (\propto ext{ volume})$$

- Adapted to the volume: Suitable scaling properties
- Reparametrization of the states:
 - $|\mu_{\theta}, \mu_{\sigma}, \mu_{\delta} \rangle \rightarrow |v, \lambda_{\sigma}, \lambda_{\delta} \rangle$, with $v = 2\lambda_{\theta}\lambda_{\sigma}\lambda_{\delta}$
 - $\hat{\mathcal{N}}_{\overline{\mu}_i}$ multiplies λ_a by a function of v and/or shifts v one unit

Quantum Hamiltonian constraint

- Out of the basic operators \hat{p}_i , $\hat{\mathcal{N}}_{\pm \bar{\mu}_i}$, \hat{a}_m , and \hat{a}_m^{\dagger} we obtain the Hamiltonian constraint operator \hat{C}_{G}
- We adopt a particular symmetric factor ordering:

 *Ĉ*_G is well defined in suitable superselection sectors, spanned by |v, λ_σ, λ_δ⟩ ⊗ |n⟩ with v, λ_σ, λ_δ > 0 and such that:
 - ▶ The values of v run along a semilattice of step 4 contained in \mathbb{R}^+ , with a minimum value $\varepsilon \in (0, 4]$
 - λ_a runs along a numerable set which is dense in \mathbb{R}^+
- \bullet The constraint provides a difference equation in $v \geq \varepsilon$
 - Kinematical resolution of the classical singularity
 - No-boundary description

Mercedes Martín-Benito (IEM-CSIC)

Quantum Gowdy Model within LQC

Physical Hilbert space

- The constraint can be regarded as an evolution equation w.r.t the internal time v.
- Although the solution is formal (owing to Ĥ_{int}), it is completely determined by the data at the initial section v = ε:
 well-posed initial value problem
- Reality conditions in a complete set of observables acting on the initial data \rightarrow physical inner product

$$\mathcal{H}_{\mathsf{Phys}} = \mathcal{H}_{\mathsf{Phys},\mathsf{BI}} \otimes \mathcal{F}_p$$

We recover the standard QFT for the inhomogeneities, on the loop quantized Bianchi I background

Mercedes Martín-Benito (IEM-CSIC)

Quantum Gowdy Model within LQC

Conclusions

- Hybrid loop/Fock approach to deal with the quantization of inhomogeneous cosmologies
- The loop quantization of the homogeneous sector suffices to cure the classical initial singularity
- While the volume is discretized in a lattice of constant step, the values of the anisotropies, being numerable, are dense in ℝ⁺.
- Quantization completed
- We recover the standard quantum field theory for the inhomogeneities, that can be regarded as degrees of freedom which propagate in a Bianchi I background