

Numerical Relativity as a tool for discovery

L. Lehner (a.k.a 'the replacement')

(Perimeter Institute/Univ. of Guelph/CIFAR)

NR...why...If we think hard enough we won't need a computer

With the right resources we can simulate situations we can't even begin to think through, and thereby provide us with **completely new and unexpected** things to think about

- Support?
 - Critical Phenomena in GR;
 - Toroidal E.H.;
 - BH stability
 - Binary black holes, approach to singularities
- Goal: Numerical construction of spacetimes.
 - Access strong field/highly dynamical scenarios
 - Singularity structure
 - Collapse, merger
 - Role in energetic phenomena
 - Global description
 - Asymptotic behavior, cosmology, 'holographic' correspondences

In cases.. NR ahead/on par/behind Math Rel

GW driven...

- Obviously, GW driven efforts are pretty much at the front,
 - GWs observations should come alive < 2020. 2010 AstroDecadal report (USA) couldn't have been more favorable. Even 1 LIGO might move down under....certainly lots to do:
 - BBH, while much has been learned, still some 'open' problems:
 - Higher mass ratios? Contact with other approaches. Can help in self-force problem? [Lousto-Zlochower,....]
 - Sweet spots for surprises?, 'super-radiance' regime?
 - Embed them in more 'natural settings', not for GWs... but for 'added physics'
 - Approximations?

- BH-NS, NS-NS, in some sense in its infancy due to complex physics

- Eqn of state? Magnetic fields?, cooling mechanisms? \rightarrow they do affect GWs
- Also, connect with longer term effects/behavior! With GR can't do it all... (multiple scale expansions?)

Beyond GWs

- A long list of fundamental qns still unanswered!
 - Nakedness? Ultra-spin/ultra-charge BHs?
 [Hubeny,Jacobson,Barausse.et.al 10]
 - Kerr BH stability [See Dain's talk]
 - Critical phenomena beyond spherical symmetry [Sorkin]
 - 'Micro-BH' formation and connections with higher dimensions [Sperhake et.al]
 - AdS/CFT and other dualities in truly dynamical scenarios
 - Cosmology: Dark matter/energy's role and observable consequences? Early universe behavior and imprints on GWs; alternatives to concordance model?, etc.
 - Strong gravity in higher dimensional settings?, new features/behavior beyond 4d intuition?

GWs & further physics BBH and then some

Example I

[Pretorius 05,]

Not so fast?

LISA: superb signal to noise ratio

• waves will be ``seen'' directly and to very large redshifts (z~ 5-10 ...)

- Potential to do accurate astrophysics
- Potential to probe cosmology
- Potential to probe higher dimensional scenarios

However:
localization to ~ square degrees [Holtz-Hughes]
distance obtained is redshift dependent

An electromagnetic counterpart resolves these issues

Nature cooperates...

- Understand both gravitational and electromagnetic wave emissions from key systems
 - Binary black holes interacting with surrounding media

10⁵¹ Ergs routinely inferred... even some 10⁶¹ ergs ?!

Studying relevant systems (BBH)

- Deal with spacetime curvature
 - Einstein equations. That's the 'solved' part! (ie... if you 'think' about it.. NR can likely give the answer, for comparable masses that is....)
- Black holes... are not really quite in vacuum...must deal with fields describing gas and electromagnetic fields
 - Poorly understood systems [we don't control the experiment]
 - Matter, what matter ?
 - Electromagnetic fields?
 - Emission process?

Two fronts. (circumbinary picture)

• Pre/prompt/post - merger emissions?

- (pre/prompt) Binary black holes as EM field stirrers

- (post) Binary black holes as bullies for matter

Merger of galaxies

-observations indicate the presence of supermassive BHs in the center of galaxies, surrounded by gas and an accretion disk
- these galaxies have undergone mergers → binary black hole merger

- further, AGNs \rightarrow BHs are surrounded by a disc of matter likely magnetized.

Merging Galaxies NGC 2207 & IC 2163 Spitzer Space Telescope • IRAC NA5A / JPLCaltech / D. Elmegreen (Vessar) sec2005-11a

Binary black holes and emissions

- Different possible options.
 - Postmerger events from circumbinary disks around BHs

[Milosavljevic-Phinney; Lipai-Loeb; Lipai et.al, Bonning et.al; Bode et.al; O'Neil et. al; Megevand et.al; Corrales et.al, etc.]

 Pre/merger events from gas/plasmas in between BHs / torques on disk

[Armitage et.al; MacFadyen et.al.; Dotti et.al; Chang. et.al.; Palenzuela et.al.; Bode et.al...] Binary black holes as blenders. A new spin on an old story (though without spin) How does the curvature/dynamics influence EM fields?

[Goldreich-Julian,

Blandford-Znajek]

- Blandford-Znajek. "Penrose" process for Kerr bh's surrounded by magnetic fields (anchored by the disk)
- Stray charges accelerate → photons → pair production
 → cascade. BH becomes surrounded by a tenuous conducting plasma with little inertia

Approach: Force-free electrodynamics

$$\nabla_{a} T^{ab} = 0 \quad \Rightarrow \quad \nabla_{a} T^{ab}_{(\text{fluid})} = - \nabla_{a} T^{ab}_{(\text{em})} = -F^{ab} J_{a}$$

if $\rho, P \ll B^{2}$ then $\nabla_{a} T^{ab}_{(\text{fluid})} \ll F^{ab} J_{a} \approx 0$
 $\mathbf{E} \cdot \mathbf{J} = 0$, $\mathbf{q} \mathbf{E} + \mathbf{J} \times \mathbf{B} = 0 \rightarrow \mathbf{E} \cdot \mathbf{B} = 0$

Stationary spacetime: (Gammie, McKinney 04)

 $\Rightarrow for$

$$E \bullet B = 0 \to F_{ab} * F^{ab} = 0 \to A_{\phi,\theta} A_{t,r} - A_{t,\phi} A_{\phi,r} = 0$$

so
$$\Omega_F \equiv -\frac{A_{t,r}}{A_{\phi,r}} = -\frac{A_{t,\theta}}{A_{\phi,\theta}} = \frac{F_{tr}}{F_{r\phi}} = \frac{F_{t\theta}}{F_{\theta\phi}}$$

$$\begin{split} E_{,t} &= 2\pi \int_{0}^{n} \sqrt{-g} F_{E} d\theta \quad (with \quad F_{E} = -T_{t}^{r}) \\ \rightarrow F_{E} &= 2(B^{r})^{2} \Omega_{F} r(\frac{a}_{2Mr} - \Omega_{F}) \sin^{2}(\theta) - B^{r} B^{\theta} \Delta \sin^{2}(\theta) \\ thus, \\ F_{E} \Big|_{r=r_{H}} &= 2(B^{r})^{2} \Omega_{F} r_{H} (\Omega_{H} - \Omega_{F}) \sin^{2}(\theta) \\ \Rightarrow for \quad 0 < \Omega_{F} < \Omega_{H} \quad and \quad B^{r} \neq 0 \quad energy \text{ out of horizon} \end{split}$$

Plasma is crucial for this to happen

Examples...

• Kerr in vacuum and FF immersed in uniform field

• In vacuum \rightarrow no radiation

With plasma → currents on the horizon 'complete the circuit'
 Membrane paradigm: wrt asymptotic observers, circuit moves through a B field → EMF produced.
 BH becomes the battery.
 [Damour,Phinney,Thorne,McDonald...]

Single BHs, disk alignment?

• we knew. P ~ B² a² in the aligned case [Tchechovskoy,Narayan,McKinney 2010].

• For misaligned case?

• Poynting flux still there, along B

• $P \sim B^2 a^2 (1 + \cos^2)$

[Palenzuela, Garret, LL. Liebling, PRD 2010]

Onto binaries

- Head on & quasicircular, equal mass. *non-spinning*
- Magnetic field as given by a 'circular loop' at far distances ~ constant within computational domain
- Field strength ~ 10⁴G
 - For this value, if $M_T = 10^8 M_O$, EM Energy dens ~ $10^{-16} [1/M^2]$
 - \rightarrow EM fields won't affect binary dynamics, but the other way around

Head-on case.

- Poynting flux,
 - What sources it ?
 - field lines tension/breaking as BH pulls them
 - Membrane paradigm: "Charge" separation induced by "Hall effect", thus circuit is still there and still moving through B.
 - Poynting flux induced, though shuts off after merger

Onto the binary case

 Orbit → Black holes move through B. As in head-on case, 'circuit' can be Established due to charge separation (see in vacuum case already, [Palenzuela et.al.])

• Thus, expect Poynting flux through orbiting stages. Also at late time (BZ).

t=0.00	zscale=1.000e=01 31 x 47 [-528 000,528 000], [-528 000,528 000]	t=0.0)	zscale=1.000e-01 29 x 37 [-528 000,528 000], [-528 000,528 000]
-1.00e-07 1.00e-07		-4.00e-06	4.	000-06

• Energy flux:

• Strong emission throughout. Burst around merger epoch

m=2 \rightarrow 0 transition

Distributed energy output

- Making contact with astro... recall $(R_{orb} \Omega_{orb}) < 1$
- GW energy flux ~ $R^4_{orb} \Omega^6_{orb} M^2_{orb}$ --strong emission--
- EM energy flux ~ $(R_{orb} \Omega_{orb})^2 B^2$ --weaker but sustained, doesn't shut off after merger--

- Spinning case will have BZ on top. Also, particularly 'cute' scenarios should show an interesting phenomenology
- For 10⁴G, 10⁸M₀ flux ~ 10⁴³⁻⁴⁴ ergs. IF Poynting flux energy efficiently transferred to observable emissions, interesting pre/post merger observations possible; to z=1 ?

BH stability, cosmic censorship and interesting connections...

Black strings

1.- Contain singularities
 2.- Ruled by null-rays
 3.- Non-unique even in spherical symm

Stability?

- Entropy $S_{BS} < S_{BH}$ (for a given M) [bs ~ M²/L ; bh ~ M^{3/2}]

0.10

0.08

0.04

0.02

0.2

0.4

0.6

0.8

1.0

1.2

Ω 0.06

Conjecture: Black strings will bifurcate

Conjecture used in many scenarios

- Density of states from Ads/CFT correspondence
- Discussions of BH on brane worlds. BH in matrix theory, etc

Somewhat recent developments

- Horowitz-Maeda, can't bifurcate in finite time. *Conjecture: will 'settle' to a non-uniform stationary soln*
- Gubser: transition to soln of first-order type in 5-6D (1st, ~2nd order pert)
- Wiseman: stationary solns which are not the Horowitz-Maeda ones (??)
- Kol: Transition from black string to BH through a conical singularity
- Sorkin-Kol: for high enough dimensions transition is of 2nd order.

• Qns:

- What is the final solution of a perturbed black string?
- Can it bifurcate in 'infinite time'?
- Are Wiseman's solns, physically relevant?

- Affine time, λ=e^s growing exponentially (~10²²)
- "bifurcation" in infinite affine time certainly possible
- 'cascade' of unstable strings also possible

*

[Garfinkle-LL-Pretorius]

Details...

- S(late time) ~ 1.369 S(t=0)
- invariants.. bhs+ bss !
- Can calculate 'thin-to-zero' time
 T~ 231M
- •→ cross Planck length in finite time

 → local solution: M=0 BH (Choptuik critical phenomena).
 Without fine tuning → generic violation of cosmic censorship!

•Not to mention an analogy...

Rayleigh-Plateau instability: Satellite formation in fluids... for lower viscosity higher number of satellites [Bhatacharya etal 08, Emparan etal 10, Cardoso-Dias 06]

More than an analogy?

• Eggers, Miyamoto. In fluids, solution is self-similar, $r \sim (t_o-t) \rightarrow d \ln(r) / d(-\ln(t_o-t)) = -1$

• We see roughly such slope (10-20%)

- What sets the timing?
 - 'energy' redistribution a la 'jeans instability' ?

With the right resources we can simulate situations we can't even begin to think through, and thereby provide us with **completely new and unexpected** things to think about