Classical general relativity as BF-Plebanski theory with linear constraints

Steffen Gielen DAMTP, University of Cambridge

6 September 2010

Work with Daniele Oriti (AEI Golm) arXiv:1004.5371 [gr-qc] Class. Quant. Grav. **27** (2010) 185017

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- 1. Motivation
- 2. The construction
 - (a) Continuum construction
 - (b) Discrete construction
- 3. Summary

Motivation

Outline

1. Motivation

2. The construction

(a) Continuum construction(b) Discrete construction

3. Summary

Motivation

In three dimensions, general relativity is topological.

$$S = \frac{1}{16\pi G} \int_{\Sigma} \epsilon_{ABC} E^A \wedge R^{BC}[\omega]$$

Quantisation of such a theory is well understood.

Idea: Try to write general relativity in 4D as a **constrained** topological theory

$$S = \int_{\Sigma} B^{AB} \wedge R_{AB}[\omega] + \lambda^{\alpha} C_{\alpha}[B];$$

the constraints should enforce $B^{AB} = \frac{1}{16\pi G} \epsilon^{AB}{}_{CD} E^C \wedge E^D$ to recover GR.

Addition of a Holst term is straightforward; then need $\Sigma^{AB} = \frac{1}{8\pi\gamma G}E^A \wedge E^B$, where $\Sigma^{AB} = \frac{1}{1\pm\gamma^2} \left(B^{AB} - \frac{\gamma}{2}\epsilon^{AB}{}_{CD}B^{CD}\right)$.

Motivation (II)

Traditional (Plebanski) formulation: Use quadratic constraints

 $\epsilon_{ABCD} \Sigma_{ab}^{AB} \Sigma_{cd}^{CD} = V \epsilon_{abcd}$

These constraints have two **separate** sectors of solutions¹

either
$$\Sigma^{AB} = \pm e^A \wedge e^B$$
 or $\Sigma^{AB} = \pm \frac{1}{2} \epsilon^{AB}{}_{CD} e^C \wedge e^D$

for some set of 1-forms e^A . Classically, one can consistently remain within the "GR" sector; quantum mechanically, the situation is less clear.

¹under the additional assumption that $V \neq 0$! V = 0 configurations are not geometric at all.

Motivation

Motivation (III)

This construction is used in discrete (spin foam) models of quantum gravity. One introduces a triangulation of spacetime and integrates Σ^{AB} over triangles

$$\Sigma^{AB}_{ab}(x) \quad \Rightarrow \quad \Sigma^{AB}_{\Delta} \equiv \int_{\Delta} \Sigma^{AB} \in \mathfrak{so}(4) \simeq \Lambda^2 \mathbb{R}^4$$

One then imposes the constraints

$$\epsilon_{ABCD} \Sigma^{AB}_{\triangle} \Sigma^{CD}_{\triangle'} = 0$$

if $\triangle = \triangle'$ or \triangle and \triangle' share an edge; the remaining constraints can be replaced by the "closure constraint"

$$\sum_{\Delta \subset \mathbb{A}} \Sigma_{\Delta}^{AB} = 0.$$

These constraints lead to the Barrett-Crane model (Barrett/Crane 1997).

Motivation (IV)

Recently, new spin foam models (EPR(L)/FK) have been proposed; these rely on the replacement of quadratic constraints on Σ_{Δ}^{AB} by **linear** constraints:

$$n_A(\mathbb{A})\Sigma^{AB}(\mathbb{A}) = 0 \quad \forall \ \mathbb{A} \subset \mathbb{A},$$

where $n_A(\triangle)$ is the normal to the tetrahedron \triangle .

These are stronger than the quadratic constraints; they restrict Σ^{AB} to the discrete analog of

$$\Sigma^{AB} = \pm e^A \wedge e^B.$$

Our aim is to extend this construction to the **classical continuum theory**.

1. Motivation

2. The construction

(a) Continuum construction(b) Discrete construction

3. Summary

Continuum construction

We need to introduce a basis of 1-forms e_a^A (i.e. we assume $det(e_a^A) \neq 0$). Equivalently, we have a basis of 3-forms

$$n_{Adef} \equiv \epsilon_{ADEF} e_d^D e_e^E e_f^F, \quad e_A^c \sim \epsilon^{cdef} n_{Adef}$$

Claim 1. For a basis of 3-forms n_A , the general solution to

$$n_{Adef} \Sigma_{ab}^{AB} = 0 \quad \forall \{a, b\} \subset \{d, e, f\}$$

is

$$\Sigma_{ab}^{AB} = G_{ab} e_a^{[A} e_b^{B]},$$

where e^A is defined in terms of n_A as above. Note that $G_{ab} = G_{ab}(x)$.

Continuum construction (II)

One could try a linear redefinition $e_a^A = \lambda_a E_a^A$ to identify this general solution

$$\Sigma_{ab}^{AB} = G_{ab} e_a^{[A} e_b^{B]}$$

with $\Sigma^{AB} = \pm E^A \wedge E^B$, but this is not possible in general; one needs additional conditions.

Imposing the additional three constraints

$$\sum_{b} \sum_{\{a,f\} \notin \{b,e\}} n_{Abef} \Sigma_{ab}^{AB} = 0, \quad e \in \{0,1,2\} \text{ fixed.}$$

implies that $G_{ab}(x) = c(x)$; can absorb this by pointwise rescaling² $E^A = \sqrt{|c|}e^A$.

²Note that c(x) = 0 at some points is not excluded, which will lead to $E^A = 0$ at these points.

1. Motivation

2. The construction

(a) Continuum construction(b) Discrete construction

3. Summary

Discrete construction

The translation of the constraints into the discretised variables is straightforward. Introduce a triangulation, integrate Σ^{AB} over triangles and n_A over tetrahedra

$$\Sigma_{ab}^{AB}, n_{Adef} \Rightarrow \Sigma^{AB}(\triangle), n_A(\triangle)$$

The discrete analogue of

$$n_{Adef} \Sigma_{ab}^{AB} = 0 \quad \forall \{a, b\} \subset \{d, e, f\}$$

is (essentially by construction) the set of linear constraints used in EPR(L)/FK

$$n_A(\mathbb{A})\Sigma^{AB}(\triangle) = 0 \quad \forall \, \triangle \subset \mathbb{A}$$

Discrete construction (II)

More interestingly, the remaining constraints would take the form

$$\sum_{\{i,j\}\not\ni\mathbf{A}} n_A(\mathbb{A}_{\mathbf{i}}) \Sigma^{AB}(\triangle_{\mathbf{A}\mathbf{j}}) = 0$$

Here, we label the tetrahedra in a 4-simplex by A, B, C, D, E; there are five of these constraints per simplex (where A is replaced by B, C, D, E respectively).

Result: These constraints follow from the EPR(L)/FK linear constraints, the closure constraint on $\Sigma^{AB}(\triangle)$, plus an analogous "4D closure constraint"

$$n_A(\triangle_{\mathbf{A}}) + n_A(\triangle_{\mathbf{B}}) + n_A(\triangle_{\mathbf{C}}) + n_A(\triangle_{\mathbf{D}}) + n_A(\triangle_{\mathbf{E}}) = 0$$

which can be given a clear geometric motivation, just as closure on Σ^{AB} !

- 1. Motivation
- 2. The construction
 - (a) Continuum construction(b) Discrete construction
- 3. Summary

Summary

- Introducing a basis of 3-forms at each point, one can give a formulation of classical GR as BF theory plus linear constraints.
- The discrete version of the same action leads to variables $\Sigma^{AB}(\Delta)$, $n_A(\triangle)$, which have to be constrained by the EPR(L)/FK linear constraints, plus a closure constraint on both Σ^{AB} and n_A , to reproduce the discrete analog of the continuum constraints.
- The 4D closure constraint suggests a new formulation in which the normals n_A are given a fully geometric role.
- Outlook: Canonical analysis of the continuum action; implications for spin foam models; relation to new GFT constructions; relation of our constraints to "edge simplicity" (Dittrich/Ryan), ...

Thank you!