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Introduction

Hilbert space of LQG is constructed with spin-networks (functions
over oriented graphs).
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Introduction
Hilbert space of LQG is constructed with spin-networks (functions
over oriented graphs).

Our Goal: Dynamics for the simplest class of graphs in LQG.
We consider 2 vertices linked with an arbitrary number of edges.
Generalization of the Rovelli-Vidotto model: Physical framework
very similar to loop quantum cosmology.

Use the U(N) framework recently introduced [F. Girelli, E. R. Livine, L. Freidel].
Results:

Link between the U(N) operators and the holonomy ops. of LQG.
Global U(N) symmetry to select the reduced space of
homogeneous/isotropic states.
U(N)-invariant Hamiltonian operator encoding the dynamics of our
2-vertex model.
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Eij and Fij operators
Space of intertwiners with N legs and fixed total area J =

∑
i ji :

H(J)
N ≡

⊕
∑

i ji=J

Hj1,..,jN . ≡
⊕

∑
i ji=J

Inv[V j1 ⊗ ..⊗ V jN ]

Area conserving operators: Eij = a†i aj + b†i bj , E†ij = Eji .

Eij : H(J)
N −→ H(J)

N

Annihilation and creation ops. to move between the spaces H(J)
N :

Fij = (aibj − ajbi) ; Fji = −Fij .

Fij : H(J)
N −→ H(J−1)

N ; F †ij : H(J)
N −→ H(J+1)

N

Invariant under global SU(2) transformations, but they do
not commute anymore with the total area operator E =

∑
i Eii .

Fij with Eij form a closed algebra.
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The 2-vertex graph
A slight generalization of the model introduced by C. Rovelli and
F. Vidotto (related to models of quantum cosmology).
The simplest non-trivial graph for spin network states in LQG:
a graph with two vertices linked by N edges.

Hilbert space of the two intertwiners:

H⊗2 = HN ⊗HN =
⊕
Jα,Jβ

H(Jα)
N ⊗H(Jβ)

N =
⊕
{jαi ,j

β
i }

Hjα1 ,..,j
α
N
⊗Hjβ1 ,..,j

β
N
.
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Matching conditions
Each edge must carry a unique SU(2) representation, thus the
spin ji seen from α or β must be the same.

Ei ≡ E (α)
i − E (β)

i = 0.

The Hilbert space of spin network states for this 2-vertex graph is:

2H ≡
⊕
{ji}

H(α)
j1,..,jN

⊗H(β)
j1,..,jN

.

Operators acting on 2H, should be invariant under global SU(2)
transformations and they should commute with the matching
conditions Ei .

Operators deforming consistently the boundary between α and β.

eij ≡ E (α)
ij E (β)

ij , fij ≡ F (α)
ij F (β)

ij , f †ij ≡ F (α)
ij
†F (β)

ij
†.

They commute with the matching conditions
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Global u(N) algebra
We can introduce the operators: Eij ≡ E (α)

ij − E (β)
ji

They form a u(N) algebra: [Eij , Ekl ] = δjkEil − δilEkj .
Ek are part of this larger u(N) algebra.
Look for vectors in 2H which are invariant under this U(N) action.

Looking for a U(N) invariant subspace
The subspace of spin network states invariant under the U(N)-action:

2Hinv ≡ InvU(N)

[
2H
]

= InvU(N) [H⊗2] = InvU(N)

⊕
Jα,Jβ

H(Jα)
N ⊗H(Jβ)

N


H(J)

N are irreducible U(N)-representations [L.Freidel, E.Livine].
U(N)-invariance ⇒ Jα = Jβ.
There exists a unique invariant vector |J〉 ∈ H(J)

N ⊗H(J)
N .�� ��2Hinv =

⊕
J∈NC |J〉
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Holonomy operator

Link between our operators eij and fij with the usual holonomy
operators of loop quantum gravity.

Holonomy operator:

χ(ij) =
1√

Ei + 1
√

Ej + 1

(
f †ij + eij + eji + fij

) 1√
Ei + 1

√
Ej + 1

.

“Dictionary” between holonomy and U(N) operators:
1

4

(
[Ei , [Ej , ·] ] + [Ei , ·] + [Ej , ·] + 1

)
χ
(ij) =

1√
Ei + 1

√
Ej + 1

f†ij
1√

Ei + 1
√

Ej + 1

1

4

(
[Ei , [Ej , ·] ]− [Ei , ·]− [Ej , ·] + 1

)
χ
(ij) =

1√
Ei + 1

√
Ej + 1

fij
1√

Ei + 1
√

Ej + 1

1

4

(
− [Ei , [Ej , ·] ] + [Ei , ·]− [Ej , ·] + 1

)
χ
(ij) =

1√
Ei + 1

√
Ej + 1

eij
1√

Ei + 1
√

Ej + 1
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Structure of U(N)-invariant operators on 2Hinv

E = E (α) = E (β) is invariant and E |J〉 = 2J |J〉.
We define the following operators

e ≡
∑

ij

eij =
∑

ij

E (α)
ij E (β)

ij , f ≡
∑

ij

fij =
∑

ij

F (α)
ij F (β)

ij .

They obviously commute with the matching conditions.
They form a surprisingly simple algebra:

[e, f ] = −2(E + N − 1)f ,[
e, f †

]
= 2f †(E + N − 1),[

f , f †
]

= 4(E + N)(e + 2(E + N − 1)) .

Introduce a shifted operator ẽ ≡ e + 2(E + N − 1).
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Structure of U(N)-invariant operators on 2Hinv

E = E (α) = E (β) is invariant and E |J〉 = 2J |J〉.
We define the following operators

e ≡
∑

ij

eij =
∑

ij

E (α)
ij E (β)

ij , f ≡
∑

ij

fij =
∑

ij

F (α)
ij F (β)

ij .

They obviously commute with the matching conditions.
Introduce a shifted operator ẽ ≡ e + 2(E + N − 1).
Our invariant Hilbert space 2Hinv is spanned by the states

|J〉un ≡ f †J |0〉 =

∑
ij

F (α)
ij
†F (β)

ij
†

J

|0〉 ; E |J〉un = 2J |J〉un

The states |J〉un diagonalize ẽ, while f † and f act respectively as
creation and annihilation operators.
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Other operators

sl(2,R) operators
Z ≡

1√
E + 2(N − 1)

ẽ
1√

E + 2(N − 1)

X− ≡
1√

E + 2(N − 1)
f

1√
E + 2(N − 1)

X+ ≡
1√

E + 2(N − 1)
f †

1√
E + 2(N − 1)

They satisfy a sl(2,R) Lie algebra:

[Z ,X±] = ±X±, [X+,X−] = −2Z

Action

Z |J〉 = (J + 1) |J〉

X− |J〉 =
√

J(J + 1) |J − 1〉

X+ |J〉 =
√

(J + 1)(J + 2) |J + 1〉

Renormalized Operators

1
√

ẽ
f

1
√

ẽ1
√

ẽ
ẽ

1
√

ẽ
= I

1
√

ẽ
f †

1
√

ẽ

Action
I|J〉 = |J〉

1
√

ẽ
f

1
√

ẽ
|J〉 = |J − 1〉 , ∀J ≥ 1

1
√

ẽ
f †

1
√

ẽ
|J〉 = |J + 1〉
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ẽ
ẽ
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Hamiltonian operator
Simplest U(N)-invariant ansatz:

H ≡ λẽ + (σf + σ̄f †)

It corresponds to the evolution operator Θ̂ of LQC.
Looking for eigenstates: three regimes (λ > 0 , cosω = −λ/2σ):

1 The oscillatory regime: |σ| > λ/2
2 The discrete regime: |σ| < λ/2
3 The critical regime: σ = ±λ/2

H is unique up to a renormalization by a E-dependent factor.
We can propose a sl2 Hamiltonian:

h ≡ 1√
E + 2(N − 1)

H
1√

E + 2(N − 1)
= λZ + (σX− + σ̄X+) ∈ sl2

1 It is an element in the Lie algebra sl2.
2 It has the same three regimes as H.
3 It corresponds to the gravitational part of the LQC Hamiltonian

constraint Ĉgrav
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H: The spectrum

The action of the Hamiltonian is:

H|J〉 = λϕ(J) |J〉+ σψ(J) |J − 1〉+ σ̄ψ(J + 1) |J + 1〉

ϕ(J) = (J + 1)(N + J − 1)

ψ(J) =
√

J(J + 1)(N + J − 1)(N + J − 2)

Looking for the eigenstates:

Hc |ψ〉 =
∑

J

αJ Hc |J〉 = β
∑

J

αJ |J〉

λϕ(J)αJ + σ̄ψ(J)αJ−1 + σψ(J + 1)αJ+1 = βαJ

1 H is positive if 2|σ| ≤ λ.
2 H is essentially self-adjoint as soon as 2|σ| ≤ λ.
3 H has a strictly positive discrete spectrum when 2|σ| < λ.
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Hc: The critical regime

The critical regime: 2|σ| = λ
�� ��σ = exp(−iθ)

Looking for eigenstates:

2ϕ(J)αJ + e+iθψ(J)αJ−1 + e−iθψ(J + 1)αJ+1 = βαJ

LQC inspired ansatz:

αJ ∼
(−1)J
√

J
eiθJ eik ln J ; k ∈ R

Eigenvalues (strictly positive):

β =
1
4

+ k2

20



H: Strong coupling

Strong coupling regime: 2|σ| > λ

The ansatz for the leading order of the eigenvectors:

αJ =
1

J + c
eiωJ c ∈ C

The eigenvalue:

β =

(
N
2
− c
)

(σ̄e−iω − σe+iω)

The eigenvalues are complex !!
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Comparing with loop quantum cosmology

The 2-vertex graph is a perfect setting to derive a quantum
cosmology sector from the full LQG. [C.Rovelli, F. Vidotto]

Gravitational part of the Hamiltonian constraint in LQC:
Ĉgr |v〉 ∝ 2v |v〉 − v |v + 4〉 − v |v − 4〉 ,

Evolution operator in LQC ( Θ̂ =
√

vĈgr
√

v ):

Θ̂ |v〉 ∝ 2v2 |v〉 − v2 |v + 4〉 − v2 |v − 4〉

Analogies

Θ̂ corresponds to H (coefficients grow as J2).
Ĉgr corresponds to sl2-Hamiltonian h (coefficients grow as J).
Spectral properties will be very similar. Apply to our framework
techniques developed in LQC.
LQC operators for the flat case Λ = 0 correspond to our critical
regime with σ = −λ/2.
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Cosmological constant
Gravitational part of the Hamiltonian constraint with Λ:

Ĉgr |v〉 = (A(v+2)+A(v−2)) |v〉−A(v+2)|v+4〉−A(v−2)|v−4〉−ΛV̂ |v〉

V̂ |v〉 = V0 v |v〉 A(v) ∼ 2A0 v .

Substitution at mathematical level: v ≡ 4J

Θ̂|J〉 ∼ 16(4A0−ΛV0)J2|J〉−32A0(J+
1
2

)
√

J(J + 1)|J+1〉−32A0(J−1
2

)
√

J(J − 1)|J−1〉

Comparison with H:

λ ≡ 16(4A0 − ΛV0), σ = σ̄ ≡ −32A0

Different regimes
Λ = 0 ⇒ σ = −λ/2. Critical regime.
Λ > 0, but close to 0 ⇒ 0 < λ < 2|σ|. Strong coupling regime.
Λ < 0 ⇒ λ > 2|σ|. Weak coupling regime.
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Conclusions

The new U(N) framework represents a new way to study the
dynamics in LQG.

The model: 2 vertex (linked with N edges) glued by matching
conditions.

Global U(N) symmetry to select the isotropic/homogeneous
states |J〉. Deriving LQC from LQG?

Relation between U(N) operators and the usual holonomy
operators in LQG.

U(N) invariant Hamiltonian. Relation with LQC.
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