Phonon spectra with asymmetrical sonic horizons

Stefano Finazzi¹ and Renaud Parentani²

¹SISSA, Trieste

²LPT, Paris-Sud Orsay

September 6, 2010, ERE2010, Granada

SF and RP, work in progress

Stefano Finazzi and Renaud Parentani

Phonon spectra withasymmetrical sonic horizons

-∃=->

- BH flux emitted by a relativistic massless field is exactly Planckian
- The temperature is given by Carter's $\kappa_C = \partial_X v|_{\text{horizon}}$
- Dispersive fields (Ω² = c²k² + c⁴k⁴/Λ²): Planckian spectrum recovered when Λ ≫ κ_c
- Is the radiation characterized by the "local" ω-dependent surface gravity evaluated at the turning point?
- How does the dispersive spectrum follow the relativistic κ_C by replacing the symmetric flows by detuned ones?

< ロ > < 同 > < 回 > < 回 > < □ > <

- BH flux emitted by a relativistic massless field is exactly Planckian
- The temperature is given by Carter's $\kappa_C = \partial_X v|_{\text{horizon}}$
- Dispersive fields (Ω² = c²k² + c⁴k⁴/Λ²): Planckian spectrum recovered when Λ ≫ κ_c
- Is the radiation characterized by the "local" ω-dependent surface gravity evaluated at the turning point?
- How does the dispersive spectrum follow the relativistic κ_C by replacing the symmetric flows by detuned ones?

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

The metric of an acoustic black hole

$$ds^{2} = \left[-c^{2}dt^{2} + (dx - v(x)dt)^{2}\right]$$

• Acoustic horizon when |v| = c.

•
$$v < 0$$
 and $v + c = D_2 + D \operatorname{sign}(x) \left[\tanh\left(\frac{\kappa |x|}{D}\right)^n \right]^{1/n}$

Asymmetric flows $D_2 \neq 0$

э.

Asymmetric flows $D_2 \neq 0$

Bogoliubov-de Gennes equation

$$\mathrm{i}\hbar(\partial_t+\mathrm{v}\partial_{\mathbf{x}})\hat{\phi}=\left[T_
ho+\mathrm{mc}^2
ight]\hat{\phi}+\mathrm{mc}^2\hat{\phi}^\dagger$$

- Scalar massless field in curved background ⇒ Acoustic metric
- UV supersonic dispersion relation

$$(\omega - kv)^2 = \Omega^2 = c^2 k^2 + \hbar^2 k^4 / 4m^2 \equiv c^2 k^2 + c^4 k^4 / \Lambda^2$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

The phonon dispersion relation

Subsonic flow |v| < c

Supersonic flow |v| > c

2 solutions

• 2 solutions if $\omega > \omega_{\max}$

≣ >

$$\frac{\cdots}{-} \frac{\omega - vk}{\pm \sqrt{c^2 k^2 + \hbar^2 k^4 / 4m^2}}$$

$D_2 = 0$

For one horizon, for $\omega < \omega_{\rm max}$: 3 asymptotically bound modes (ABM)

- positive norm rightgoing mode
- positive norm leftgoing mode
- negative norm mode: propagating in the supersonic region, decaying in the subsonic region

Results

• When $(c + v)(x \to +\infty) = -(c + v)(x \to -\infty)$, Hawking radiation at

$$T_{H} = \frac{\kappa_{C}}{2\pi} \left[1 + O\left(\frac{\kappa_{C}}{\omega_{\max}}\right)^{4} \right]$$

• $f_{\omega} \rightarrow 0$ for $\omega \rightarrow \omega_{\max}$.

• The radiation is robust even for strong dispersion.

$D_2 = 0$

For one horizon, for $\omega < \omega_{\rm max}$: 3 asymptotically bound modes (ABM)

- positive norm rightgoing mode
- positive norm leftgoing mode
- negative norm mode: propagating in the supersonic region, decaying in the subsonic region
- Results
 - When $(c + v)(x \to +\infty) = -(c + v)(x \to -\infty)$, Hawking radiation at

$$T_{H} = \frac{\kappa_{\rm C}}{2\pi} \left[1 + O\left(\frac{\kappa_{\rm C}}{\omega_{\rm max}}\right)^4 \right]$$

• $f_{\omega} \rightarrow 0$ for $\omega \rightarrow \omega_{\max}$.

• The radiation is robust even for strong dispersion.

J Macher and RP, Phys. Rev. A 80 043601 (2009)

Effective temperature depends on frequency

$$n_{\omega} = \frac{1}{\exp(\hbar\omega/\kappa_B T_{\omega}) - 1}$$

- T_{ω} is constant at low frequency
- Hawking temperature $T_H = \kappa_C/2\pi$

ъ

Effective temperature

Relevant parameters: ω_{max} and D_2/D

$$\Delta_{H} = \frac{f(\omega = T_{H}) - p_{T_{H}}(\omega = T_{H})}{p_{T_{H}}(\omega = T_{H})}$$

• For $\Lambda \to \infty$, $\omega_{\text{max}} \to \infty$: the spectrum is Planckian.

• At fixed *n*, the relevant parameters are $\omega_{\text{max}}/\kappa$ and D_2/D .

Relevant parameters: the slope of the transition n

- D₂=0 n plays no role
- $D_2 \neq 0$
 - n governs the surface gravity k_c
 - for large values of *n* the transition is steeper, higher derivatives $d^m(v + c)/dx^m$ are larger at the sonic horizon and affect significantly the flux and the effective temperature

$D_2 < -D$. Preliminary results.

- Radiation: the flux and the effective temperatures change continuously with *D*₂
- T_{ω} is no longer constant even at low frequency
 - The spectrum is not Planckian
 - No Hawking temperature

There exist a value $\omega_{ m min}$ such that

#PM(<i>x</i> < 0)	#PM(x > 0)	#ABM
4	4	
4	2	3
2	2	2

PM=Propagating Mode (real k) ABS=Asymptotically Bound Mode

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

$D_2 < -D$. Preliminary results.

- Radiation: the flux and the effective temperatures change continuously with *D*₂
- T_{ω} is no longer constant even at low frequency
 - The spectrum is not Planckian
 - No Hawking temperature

There exist a value ω_{\min} such that

	#PM(<i>x</i> < 0)	#PM(<i>x</i> > 0)	#ABM
$\omega < \omega_{\min}$	4	4	4
$\omega_{\min} < \omega < \omega_{\max}$	4	2	3
$\omega > \omega_{\max}$	2	2	2

PM=Propagating Mode (real *k*) ABS=Asymptotically Bound Mode

- acoustic spacetime in BEC:
 - standard black holes
 - transitions between almost-supersonic/supersonic regions or supersonic/supersonic regions
- Hawking radiation is very robust
- asymmetric subsonic/supersonic transition: the spectrum is Planckian at low frequency
- relevant parameters: $\omega_{\text{max}}/\kappa$, D_2/D , n
- supersonic/supersonic transition: no Planck spectrum

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

- regime $\omega < \omega_{\min}$
 - 4 ABMs instead of 3
 - new interaction channels $(4 \times 4$ scattering matrix)
- opposite of a black hole laser: supersonic subsonic supersonic (4 ABM)
- this is the analogue of a warp drive with modified dispersion relations

・ 戸 ト ・ ヨ ト ・ ヨ ト

э