LISA and LISA Pathfinder

gravitational wave observation in space

Felipe Guzmán for the LISA and LISA Pathfinder teams

NASA Goddard Space Flight Center

ERE 2010 Granada, 09/09/2010

LISA: Laser Interferometer Space Antenna

- Gravitational wave detector in space (NASA-ESA collaboration)
- Sensitivity at low frequencies: 10^{-4} Hz \cdots 0.1 Hz
 - Inaccessible for ground-based detectors (seismic noise predominance)
- Interferometer arm: 5 Million km \pm 1 % $\rightarrow h = 2 \frac{\delta L}{L}$
- Guaranteed sources of gravitational waves

LISA main sources

- Binary systems (from SMBH to white dwarfs)
- Coalescence and mergers
- EMRI extreme mass ratio inspirals
- Backgrounds

LISA strain sensitivity $\mathbf{h} = 10^{-21}$ at 1 mHz

- \bullet One year integration time and SNR $=5 \Rightarrow h = 10^{-23}$
- Comparable to ground based detectors at high frequencies

LISA main technologies

Interferometry

Optical pathlength sensitivity: \sim

$$\delta s=$$
40 pm $/\sqrt{\mathrm{Hz}}$ at 1 mHz.

Acceleration noise

Test masses drag-free level:

$$\widetilde{\delta a}$$
 =3 $imes$ 10 $^{-15}\,{
m m\cdot s^{-2}}/{\sqrt{
m Hz}}$ at 1 mHz.

Nd:YAG-NPRO (LISA)

- Wavelength: $\lambda = 1064 \, \mathrm{nm}$
- $\bullet~\mbox{Output}$ power: $\mbox{P}=1\mbox{--}2\,\mbox{W}$
- Required laser unit frequency stability: $\delta \tilde{f} \leq 30 \,\mathrm{Hz}/\sqrt{\mathrm{Hz}} \otimes 1 \,\mathrm{mHz}$ (total required stability: $10^{-6} \,\mathrm{Hz}/\sqrt{\mathrm{Hz}} \Rightarrow \mathrm{TDI}$)

TESAT flight model (LISA Pathfinder)

- Output power: P=25 mW
- Fiber coupled
- Space qualified

Interferometer end mirror: Drag-Free Testmasses

Test Mass

- Pt-Au alloy
- $4 \times 4 \times 4 \,\mathrm{cm}^3$
- Ideally free falling

Inertial Reference Sensor

- Capacitive sensor
- Position readout of the TM
- Correction of the TM position

Caging Mechanism

2000 N vs. 3 $\mu\mathrm{N}$

Launch phase

The TM has to be hold in a stable position. The technical challenge is to

- ensure stability without destroying the electrical & mechanical properties
- separate the TM from the Caging-system in the dynamic range of the IRS

Micro-Newton Thrusters

μN -thrusters

- Used in other missions with different specifications
- Developed by industry
- Dynamic range: 0.1 μN –100 μN
- Resolution: $0.1\,\mu\mathrm{N}$

The MTs correct the position of the spacecraft with respect to the TM \Rightarrow Drag-Free!

LISA Pathfinder (LPF)

Demonstration of LISA technologies in space

- Two LISA-like TMs inside one satellite ⇒ one small "LISA-arm".
- Interferometry between Test-Masses with picometer precision.
- Drag Free System for Test Masses with femtonewton stability.
- Micronewton thrusters for drag free control of the satellite.
- LISA Technology Package (LTP): European experiment (this talk).

The LISA technology package (LTP) core assembly

Two test masses inside their vacuum enclosures and interferometer between them.

The LTP core assembly

Two test masses inside their vacuum enclosures and interferometer between them.

< ∃→

LTP interferometric concept

The LTP interferometer monitors test masses position fluctuations and alignment.

LTP optical bench engineering model (EM)

Current performance with AEI phasemeter and EM optical bench.

< 🗇 🕨

- 4 E b

< ∃ →

< 🗇 🕨

- 4 E b

- ∢ ⊒ →

< 🗇 🕨

- A 🖻 🕨

B b

< 🗇 🕨

-

-

- We have a mature concept for the LISA instrument.
- LISA Pathfinder is a great test facility for LISA technology.
- Flight models of LISA Pathfinder units have been delivered and are being tested (as we speak!) prior to integration.
- Still a long way to go but we're getting there...

