
Axially symmetric spacetimes: numerical and
analytical perspectives

Sergio Dain

FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina.
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Symmetries and Einstein equations

I The presence of a symmetry reduces the degrees of freedom
of Einstein equations and hence it simplifies considerably its
analysis.

I In vacuum, due to Birkoff’s theorem, spherical symmetry has
no dynamic.

I For isolated systems, the next possible model with symmetries
are axially symmetric spacetimes. No additional symmetry can
be imposed to the spacetime if we want to keep the
gravitational radiation and a complete null infinity.

I Axial symmetry is the only symmetry we can impose to
gravitational waves emitted by isolated systems.



Physical models in axial symmetry (strong field regime)

I Head-on collisions of two black holes.

I Rotating, non-stationary, black holes.

I Formation of black holes: weak cosmic censorship.

I Critical collapse of gravitational waves.

These models can be studied for pure vacuum axially symmetric
waves.



Two relevant open problems (long term)

I The stability of the Kerr black hole in axial symmetry
(Mathematical).

I Critical collapse of axially symmetric gravitational waves
(Numerical).



Axial symmetry

(V, gµν): spacetime.
(4)Rµν = 0 Einstein vacuum equations.
ηµ Killing vector (symmetry), ∇̄(νηµ) = 0.
We define the square of the norm and the twist of ηµ, respectively,
by

η = ηµηνgµν , ωµ = εµνγαη
ν∇̄γηα.

Using the vacuum equations we obtain

ωµ = ∇̄µω.

(η, ω): dynamical degree of freedom of the gravitational waves.



Symmetry reduction

N : 3-manifold defined as the collection of all trajectories of ηµ.
We define the Lorentzian metric hµν on N by

ηgµν = hµν + ηµην .

We have rescaled the intrinsic metric hµν by a conformal factor η.
Einstein equations can be written as follows:

∇a∇aη =
1

η
(∇aη∇aη −∇aω∇aω) ,

∇a∇aω =
2

η
∇aω∇aη,

(3)Rab =
1

2η
(∇aη∇bη +∇aω∇bω) .

where ∇a and (3)Rab are the connexion and the Ricci tensor of hab.



Gravitational Radiation=Effective Matter Sources

I We have reduced (a la Kaluza-Klein) Einstein vacuum
equations in 4-dimensions to a system of equations intrinsic to
(N , hab).

I These equations take the form of 3-dimensional Einstein
equations coupled to “effective” matter sources determined by
(η, ω).

I Since in 3-dimensions there is no radiation (the Weyl tensor is
zero), these sources represent the true gravitational degree of
freedom that have descended from 4-dimensions to appear as
“matter” in 3-dimensions.



Difficulties in axial symmetry

I To take advantage of the symmetry an adapted coordinate
system (reduction) should be used: the norm η of the axial
Killing vector vanished at the axis, and hence the reduced
equations are formally singular there.

I In fact, it can be argued that this singular behavior near
the axis is so complicated that the axially symmetric
case is as hard as the full general case.



Advantages of axial symmetry

1. Less computationally expensive: only two effective spatial
dimensions. The number of equations and variables are
reduced.

2. Conservation of angular momentum: the angular momentum
is a quasilocal conserved quantity in axial symmetry (Komar
integral of the Killing vector).
Axially symmetric gravitational waves do not carry angular
momentum. No Penrose process, no superradiant
scattering.

3. The mass integral formula: the total mass can be written as a
positive definite volume integral, as we will see in the
following.



Numerical Relativity → Mathematical Relativity

I The difficulty introduced by the singular behavior at the axis is
so severe that until recently axially symmetric spacetimes have
not been studied in detail even using numerical techniques.

I At the axis we have singular boundary conditions. In
Garfinkle, Duncan 01; Choptuik, Hirschmann, Liebling,
Pretorius 03; Rinne 08; this kind of singular boundary
conditions have been successfully implemented numerically.



2+1 decomposition

We make a 2 + 1 decomposition of the 3-dimensional, Lorenzian,
metric hab.

qAB : intrinsic metric on S .
χAB : second fundamental form of S .



Maximal isothermal gauge

Lapse: we impose the maximal condition on the surfaces

χ = 0.

Shift: we require that the intrinsic metric qAB has the following
form

qAB = e2uδAB ,

where δAB is the flat metric in two dimensions.
These conditions imply elliptic equations for lapse and shift.



The mass integral formula

The gauge fixed a coordinate system (t, ρ, z). We define σ by

η = ρ2eσ.

The mass is given by

m =
1

16

∫
S
ε ρ dρdz ,

where

ε =
e2u

η2

(
η′2 + ω′2

)
+ 2e2uχABχAB + |∂σ|2 +

|∂ω|2

η2
,

and
η′ = na∇aη.

The density ε is positive and regular at the axis.



Mass conservation

There exist a unique solution of the maximal-isothermal gauge
equations and the mass integral given above is conserved along the
evolution, that is

dm

dt
= 0.



The role of the mass in the evolution

I In any physical theory conserved quantities (in particular,
conserved energies) are very important to control the
evolution of the system.

I However, in General Relativity, the conserved mass appears as
a boundary integral and not as a volume integral (as, for
example, in the wave equation).

I Hence it is not possible to relate the mass with any norm of
the fields to control the evolution of them (for the wave
equation the energy is precisely the appropriate norm of the
solutions).

I Axially symmetric systems represent a remarkable exception.



Extreme Kerr as a minimum of the mass

Extreme Kerr is an absolute minimum of the mass for all regular
axially symmetric data with fixed angular momentum. It follows
that the inequality (S. D. 06)

m ≥
√
|J|,

holds for axially symmetric (non-stationary) black holes. With
equality if and only if the data are extreme Kerr. (This inequality
has been generalized to include charge by Chruściel–Lopes Costa
10)
This suggests an stability property of extreme Kerr in axial
symmetry.



Mathematical Relativity → Numerical Relativity

1. The mass integral formula: control the norm of the fields
along the evolution. It fixes the gauge: maximal isothermal.
It also suggest that constrained evolution schemes are
better than free evolution schemes.

2. The role of extreme black holes as minimizer of the mass
integral: suggests stability properties of these black holes. In
particular, it suggests that it is perhaps easier to prove
stability of an extreme black holes than a non-extreme one in
axial symmetry.



Structure of the evolution equations (twist free case ω = 0)

Metric

h = −α
2

ρ2
e−σdt2 + eσ+2q

(
(dρ+ βρdt)2 + (dz + βzdt)2

)
.

Five variables: σ, q, α, βρ, βz .
Five equations: coupled non-linear hyperbolic-elliptic system.

I 1– hyperbolic equation for q (non-linear wave equation).

I 4– elliptic equations for σ, α, βρ, βz (2-gauge conditions,
2-constraint equations)

Constrained evolution scheme: the constrains are solved at each
step of the evolution.



I This evolution scheme (with some variants) were used in the
numerical works mentioned before but without noticing this
property of the mass. That is, this gauge has not only
desirable analytical properties but it is also useful for
numerical studies.

I Other gauge choices in axial symmetry have been used by
Rinne 05 and Sorkin 10.

I It is expected that the gauge exists for all t even when
singularities are formed (since it is a maximal gauge).



Evolution in the maximal-isothermal gauge

I The very basic question of well-posedness of the equations in
this gauge is open.

I This question is rather subtle because of the singular behavior
at the axis mentioned above.

I There are many possible evolution schemes (even if we restrict
ourselves to constrained systems). It is very likely that few of
them (or may be only one) are well-posed. If this is the case,
the resolution of the well-posedness question will lead us to
select (or even discover) the correct evolution scheme.

I The first step is to study the linearization of the equations
around fixed solutions.



Why this problem is relevant?

I Being the local existence problem so complicated in this gauge
one can wonder what can be said about the global behavior of
the evolution, which is, of course, the ultimate goal.

I However, many of the main complications of this gauge are
already present in the well-posedness problem because they are
related to the local behavior of the fields at the symmetry axis.

I If one can sort out the difficulties for the linearized system in
a satisfactory way there is a good chance that the mass
integral formula can be used to control the global evolution in
some way.



Relevance of the linear problem

The well-posedness of the linear equations are also relevant in
themselves for the following two reasons:

I The mass formula at the linear level can in principle be used
to say something about linear stability in axial symmetry of a
background solution like a black hole.

I The well-posedness of the linear equations and the mass
formula give insight on appropriate boundary conditions on a
bounded domain. In particular, the mass formula allows us to
calculate the gravitational waves that leave or enter a
bounded domain.



Linear equations (flat background, no twist)

The unknowns are only two functions v and β, they satisfy the
following equations

v̈ = ∆v − ∂ρv

ρ
+ ρ∂ρ

(
β

ρ

)
wave equation

∆β =
2

ρ

(
∆v − ∂ρv

ρ

)
elliptic equation

We are using coordinates (t, ρ, z), with ∆v = ∂2
ρv + ∂2

z v and a dot
denotes time derivative.
With respect to the previous expression for the spacetime metric
we have the relations βρ = β and q = v̇ .



Boundary and initial conditions

Boundary conditions for the elliptic equation:

β|ρ=0 = 0 at the axis, β = O(r−1) at infinity,

where r =
√
ρ2 + z2.

Initial conditions for the wave equation:

v |t=0 = f , v̇ |t=0 = g .

At the axis we require that the initial conditions vanished, namely

f |ρ=0 = 0, g |ρ=0 = 0.



Mass conservation for the linear equations

The total mass of the system is given

m =
1

16

∫
R2

+

(
4
|∂v |2

ρ2
+ (∆v)2 + |∂σ|2

)
ρ dρdz .

Where σ is given in terms of v by

∆σ +
∂ρσ

ρ
= −∆v̇ .

For a solution we have ṁ = 0.



Results: numerical

Strong numerical evidence that the system is well-posed and
that its solutions have the expected behavior. (O. Ortiz, S.
D. 09).
Quasi-local mass

mΩ =

∫
Ω
ερ dρdz ,

and quasi-local mass conservation formula

ṁΩ =

∮
∂Ω
εAnA,

where nA is the unit normal of ∂Ω. The quantity εAnA measure
how much energy is leaving or entering the domain.



Outer boundary conditions

I To model an isolated system on a finite grid it is important to
prescribe boundary conditions such that the gravitational
radiation leaves the domain. In general, this is a very difficult
problem since it is not even clear what we mean by
gravitational radiation at a finite distance.

I In our gauge the mass formula allow us to compute
gravitational radiation on a bounded domain.

The mass formula suggests a particular kind of boundary
conditions such that

ṁΩ ≤ 0,

at least for the class of initial conditions studied.
We emphasize however that we have not been able to prove
this analytically.



Results: mathematical

I We solved this linearized system explicitly in terms of
integral transformations in a remarkable simple form (M.
Reiris–S. D. 10).

I This integral transformation plays the role as the Fourier
transform for constant coefficient equations

I This representation is well suited to obtain useful estimates to
apply in the non-linear case.



Quasi-local geometrical inequalities in axial symmetry

The Christodoulou mass of a black hole is defined as follows

mbh =

√
A

16π
+

4πJ2

A
.

where A is the area of the horizon and J the angular momentum.
For the Kerr black hole: m = mbh.
This formula trivially satisfies the inequality√

|J| ≤ mbh.

If we accept mbh as the correct formula for the quasi-local mass of
an axially symmetric black hole, then this inequality provides the,
rather trivial, quasi-local version of

√
|J| ≤ m mentioned before.



Is mbh the quasi-local mass for a non-stationary black hole?

Heuristic argument

I Consider the evolution of mbh. By the area theorem, we know
that the horizon area A will increase.

I If we assume axial symmetry, then the angular momentum will
be conserved at the quasi-local level. On physical grounds,
one would expect that in this situation the quasi-local mass of
the black hole should increase with the area, since there is no
mechanism at the classical level to extract mass from the
black hole (no Penrose process in axial symmetry).

I Then, one would expect that both the area A and the
quasi-local mass mbh should monotonically increase with
time.



The time derivative of mbh is given by

ṁbh =
Ȧ

32πmbh

(
1−

(
8πJ

A

)2
)
,

were we have used that the angular momentum J is conserved. By
the area theorem, we have

Ȧ ≥ 0.

Then ˙mbh ≥ 0 if and only if the following inequality is satisfied

|J| ≤ 8πA.

It is natural to conjecture that this inequality should be
satisfied for any horizon in an axially symmetric
asymptotically flat initial data. With equality only for
extreme Kerr black hole.
If it is true, then we have a non trivial monotonic quantity (in
addition to the black hole area) mbh

ṁbh ≥ 0.

Non-trivial control on the evolution.



Results on horizon area–angular momentum inequality for
axisymmetric black holes

I It is proved for stationary black holes with surrounding matter.
J. Hennig, M. Ansorg, C. Cederbaum. 08.

I The first variation of the area is zero and the second variation
is positive on extreme Kerr for cylindrical initial data. This
provides strong analytical evidences that the inequality is true
for cylindrical initial data (non-stationary). And hence, it is
true for the non trivial family of spinning Bowen-York initial
data. (S. D. 10)

I At least near equilibrium (where the inequality is expected to
be valid) it provides a reasonable definition of temperature for
non-stationary axially symmetric black holes and an
‘extremality criteria’ in the spirit of I. Booth, S. Fairhurst 08.



Open problems (short term)

Evolution (hyperbolic flavor)

I Well-posedness for the maximal isothermal gauge. Is the
Hamiltonian constraint always solvable? Does the gauge
breaks down? (Mathematical)

I Implementation of the radiation boundary conditions for the
full equations. How much they improve the evolution scheme?
(Numerical)

I It is possible to prove that for such boundary conditions the
energy is always decreasing? May be with some extra
assumptions (Mathematical). Or, find counterexamples.
(Numerical)

I Optimal choice of variables and evolution scheme.
(Mathematical, Numerical)



Initial data (elliptic flavor)

I Prove the inequality |J| ≤ 8πA for initial data close to Kerr
(M. E. Gabach, S. D, working on it). (Mathematical)

I Give strong evidences (or find a counter example) of this
inequality far from known solutions. For example, for multiple
black holes. (Numerical)


