

General polarization modes for the Rosen gravitational wave

Bethan Cropp, Matt Visser

Victoria University of Wellington, New Zealand

8th September 2010 ERE2010, Granada Talk based on:

"General polarization modes for the Rosen gravitational wave"

Bethan Cropp and Matt Visser

Classical and Quantum Gravity 27 165022

Brinkmann Form

Strong field gravitational waves are often represented in the Brinkmann † or Rosen †† forms.

The Brinkmann form for a general pp wave is given by

$$ds^{2} = -2 du dv + H(u, x, y) du^{2} + dx^{2} + dy^{2}.$$
 (1)

For which the only non-zero component of the Ricci tensor is

$$R_{uu} = -\frac{1}{2} \left\{ \partial_x^2 H(u, x, y) + \partial_y^2 H(u, x, y) \right\}.$$
 (2)

Restricting ourselves to vacuum plane waves gives us the form:

$$ds^{2} = -2 du dv + \left\{ \left[x^{2} - y^{2} \right] H_{+}(u) + 2xy H_{\times}(u) \right\} du^{2} + dx^{2} + dy^{2}.$$
 (3)

So the + and \times polarizations have explicitly decoupled.

† H. W. Brinkmann, "Einstein spaces which are mapped conformally on each other", Mathematische Annalen 18 (1925)119. doi:10.1007/BF01208647.
†† A. Einstein and N. Rosen, "On gravitational waves", J. Franklin Inst. 223 (1937) 43.

Rosen form

The most general form of the Rosen metric is

$$ds^2 = -2 du dv + g_{AB}(u) dx^A dx^B.$$
(4)

It is a standard result[†] that the only non-zero component of R_{ab} is:

$$R_{uu} = -\left\{\frac{1}{2} g^{AB} g_{AB}^{\prime\prime} - \frac{1}{4} g^{AB} g_{BC}^{\prime} g^{CD} g_{DA}^{\prime}\right\}.$$
 (5)

Though relatively compact, the matrix inversions implicit in raising the indices mean that this quantity is grossly nonlinear.

In particular, the + and imes linear polarizations do not decouple in any obvious way.

† Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, and Eduard Herlt, *Exact Solutions of Einstein's Field Equations*. (Cambridge University Press, Cambridge, 2003), section 24.5.

Linear Polarization

Consider the strong-field gravity wave metric in the + linear polarization, so $g_{xy} = 0$.

The resulting metric can be written in the form

$$ds^{2} = -2 du dv + f^{2}(u) dx^{2} + g^{2}(u) dy^{2}.$$
 (6)

The only non-zero component of the Ricci tensor is:

$$R_{uu} = -\left\{\frac{f''}{f} + \frac{g''}{g}\right\}.$$
(7)

This can be put into a more tractable form if we write the metric as

$$ds^{2} = -2 du dv + S^{2}(u) \left\{ e^{+X(u)} dx^{2} + e^{-X(u)} dy^{2} \right\},$$
(8)

then

$$R_{uu} = -\frac{1}{2} \left\{ 4 \frac{S''}{S} + (X')^2 \right\}.$$
 (9)

Now in vacuum we have

$$X' = 2\sqrt{-S''/S}$$
, so that $X(u) = 2\int^{u} \sqrt{-S''/S} \, \mathrm{d}u$. (10)

Linear Polarization

So the Rosen form for the + polarization is

$$ds^{2} = -2 du dv + S^{2}(u) \left\{ \exp\left(2 \int^{u} \sqrt{-S''/S} du\right) dx^{2} + \exp\left(-2 \int^{u} \sqrt{-S''/S} du\right) dy^{2} \right\}.$$
 (11)

We can explicitly construct a \times polarization by rotating the solution for the + polarization by 45° which gives us

$$ds^{2} = -2 du dv + S^{2}(u) \left\{ \cosh\left(2 \int^{u} \sqrt{-S''/S} du\right) [dx^{2} + dy^{2}] + 2 \sinh\left(2 \int^{u} \sqrt{-S''/S} du\right) dx dy \right\}.$$
 (12)

Likewise we can form any linear polarization by a rotation in the xy plane.

Note here we have split g_{AB} into a unit determinant matrix of hyperbolic functions and an "envelope function" S(u).

Arbitrary Polarization

Take an arbitrary, u dependent polarization, and consider the following metric ansatz:

$$ds^{2} = -2 du dv + S^{2}(u) \left\{ \left[\cosh(X(u)) + \cos(\theta(u)) \sinh(X(u)) \right] dx^{2} + 2 \sin(\theta(u)) \sinh(X(u)) dx dy + \left[\cosh(X(u)) - \cos(\theta(u)) \sinh(X(u)) \right] dy^{2} \right\}.$$
 (13)

This reduces to linear polarizations when $\theta(u)$ is a constant. Now

$$R_{uu} = -\frac{1}{2} \left\{ 4 \frac{S''}{S} + (X')^2 + \sinh^2(X(u)) (\theta')^2 \right\}.$$
 (14)

The vacuum equations are simply

$$4\frac{S''}{S} + (X')^2 + \sinh^2(X(u)) \ (\theta')^2 = 0.$$
 (15)

Arbitrary Polarization

Introduce a dummy function L(u) and split:

$$4\frac{S''}{S} + (L')^2 = 0, (16)$$

$$(L')^{2} = (X')^{2} + \sinh^{2}(X(u)) \ (\theta')^{2}.$$
(17)

Equation (16) is the equation that had to be solved for linear polarization. The second of these equations can be rewritten as

$$dL^2 = dX^2 + \sinh^2(X) d\theta^2, \qquad (18)$$

and is the statement that L can be interpreted as distance in the 2-dimensional hyperbolic plane H_2 .

Thus if we pick an arbitrary curve in the (X, θ) plane and find its length, L(u) then solve for S(u) we have the solution for an arbitrary polarization.

Comparison to EM waves

Compare this situation with electromagnetic waves. A arbitrary polarization can be written as

$$\vec{E}(u) = E_x(u)\,\hat{x} + E_y(u)\,\hat{y},\tag{19}$$

without further constraint, so could be viewed as a walk in the (E_x, E_y) plane. Or alternatively, with a coordinate transform,

$$\vec{E}(u) = E(u)\cos\theta(u)\,\hat{x} + E(u)\sin\theta(u)\,\hat{y}.$$
(20)

So an arbitrary polarization can be viewed as a random walk in the (E, θ) plane, where the (E, θ) plane has the natural Euclidean metric

$$dL^2 = dE^2 + E^2 d\theta^2$$
⁽²¹⁾

In contrast we are now dealing with a walk in the hyperbolic plane H_2 .

We also have a remaining equation to solve for S(u) due to the inherent nonlinearities in strong field gravity

Circular Polarization

As an example, consider circular polarization in the Rosen form.

For this we want $\theta(u)$ to progress linearly with a constant distortion, X(u)

$$\theta(u) = \Omega_0 \ u; \qquad X(u) = X_0. \tag{22}$$

So

$$ds^{2} = -2 du dv + S^{2}(u) \left\{ [\cosh(X_{0}) + \cos(\Omega_{0} \ u) \sinh(X_{0})] dx^{2} + 2 \sin(\Omega_{0} u) \sinh(X_{0}) dx dy + [\cosh(X_{0}) - \cos(\Omega_{0} u) \sinh(X_{0})] dy^{2} \right\}.$$
(23)

Circular Polarization

The only nontrivial component of the Ricci tensor is then

$$R_{uu} = -\frac{1}{2} \left\{ 4 \frac{S''}{S} + \sinh^2(X_0) \Omega_0^2 \right\}.$$
 (24)

The vacuum equations are can be solved for

$$S(u) = S_0 \, \cos\left\{\frac{\sinh(X_0) \,\Omega_0 \,(u-u_0)}{2}\right\}.$$
 (25)

So we have fully solved circular polarization in the Rosen form

This agrees with the limit of weak field gravity, which corresponds to $X_0 \ll 1$ so $S \approx S_0$ and

$$ds^{2} \approx -2 du dv + dx^{2} + dy^{2} + X_{0} \left\{ \cos(\Omega_{0} u) [dx^{2} - dy^{2}] + 2 \sin(\Omega_{0} u) dx dy \right\}.$$
(26)

Rosen form in arbitrary dimensions

Consider a pp wave in Rosen form with d_{\perp} dimensions perpendicular to the direction of travel. Again

$$R_{uu} = -\left\{\frac{1}{2} g^{AB} g_{AB}^{\prime\prime} - \frac{1}{4} g^{AB} g_{BC}^{\prime} g^{CD} g_{DA}^{\prime}\right\}.$$
 (27)

Split $g_{AB}(u)$ into a "envelope" S(u) and a unit determinant $\hat{g}_{AB}(u)$

$$g_{AB}(u) = S^2(u) \hat{g}_{AB}(u),$$
 (28)

Calculating the various components in the Ricci tensor, using the relation

$$[\hat{g}^{AB} \; \hat{g}'_{AB}] = 0, \tag{29}$$

And differentiating,

$$[\hat{g}^{AB} \ \hat{g}_{AB}^{\prime\prime}] - [\hat{g}^{AB} \ \hat{g}_{BC}^{\prime} \ \hat{g}^{CD} \ \hat{g}_{DA}^{\prime}] = 0.$$
(30)

It is found that

$$R_{uu} = -d_{\perp} \frac{S''}{S} - \frac{1}{2} \left[\hat{g}^{AB} \ \hat{g}'_{BC} \ \hat{g}^{CD} \ \hat{g}'_{DA} \right]. \tag{31}$$

By splitting the metric we have simplified the vacuum equations, decoupling the parts depending on the "envelope" and the "direction of oscillation".

Rosen form in arbitrary dimensions

Consider the set $SS(\mathbb{R}, d_{\perp})$ of unit determinant real symmetric matrices and the Riemannian metric

$$dL^{2} = Tr\left\{ [\hat{g}]^{-1} d[\hat{g}] [\hat{g}]^{-1} d[\hat{g}] \right\}.$$
(32)

Then

$$R_{uu} = -\frac{1}{2} \left\{ 2d_{\perp} \frac{S''(u)}{S(u)} + \left(\frac{dL}{du}\right)^2 \right\}.$$
 (33)

The vacuum Einstein equations reduce to

$$\frac{dL}{du} = \sqrt{-2d_{\perp} \frac{S''}{S}}; \qquad L(u) = \int^{u} \sqrt{-2d_{\perp} \frac{S''}{S}} du.$$
(34)

An arbitrary polarization of a vacuum Rosen wave is a random walk in $SS(\mathbb{R}, d_{\perp})$, with distance along the walk L(u) being related to the envelope function S(u) as above.

Summary

- Arbitrary polarizations, while trivial in the Brinkmann form, pose a difficulty in the Rosen form.
- We have made progress on this by splitting the relevant equations into an "envelope" function and a unit determinant polarization matrix.
- The vacuum equations reduce to a differential equation regarding the envelope and a random walk in polarization space.
- This has been generalized to arbitrary dimensions.
- Based on this we can construct arbitrary polarisation states, and in particular have constructed a circularly polarized strong field wave in Rosen form.