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Brinkmann Form
Strong field gravitational waves are often represented in the Brinkmann†

or Rosen†† forms.

The Brinkmann form for a general pp wave is given by

ds2 = −2 du dv + H(u, x , y) du2 + dx2 + dy2. (1)

For which the only non-zero component of the Ricci tensor is

Ruu = −1

2

{
∂2

xH(u, x , y) + ∂2
yH(u, x , y)

}
. (2)

Restricting ourselves to vacuum plane waves gives us the form:

ds2 = −2 du dv +
{

[x2 − y2] H+(u) + 2xy H×(u)
}

du2 + dx2 + dy2. (3)

So the + and × polarizations have explicitly decoupled.

† H. W. Brinkmann, “Einstein spaces which are mapped conformally on each other”,
Mathematische Annalen 18 (1925)119. doi:10.1007/BF01208647.
†† A. Einstein and N. Rosen, “On gravitational waves”, J. Franklin Inst. 223 (1937) 43.
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Rosen form

The most general form of the Rosen metric is

ds2 = −2 du dv + gAB(u) dxA dxB . (4)

It is a standard result† that the only non-zero component of Rab is:

Ruu = −
{

1

2
gAB g ′′AB −

1

4
gAB g ′BC gCD g ′DA

}
. (5)

Though relatively compact, the matrix inversions implicit in raising the indices
mean that this quantity is grossly nonlinear.

In particular, the + and × linear polarizations do not decouple in any obvious way.

† Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, and Eduard
Herlt, Exact Solutions of Einstein’s Field Equations. (Cambridge University Press, Cambridge,
2003), section 24.5.
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Linear Polarization
Consider the strong-field gravity wave metric in the + linear polarization, so
gxy = 0.

The resulting metric can be written in the form

ds2 = −2 du dv + f 2(u) dx2 + g2(u) dy2. (6)

The only non-zero component of the Ricci tensor is:

Ruu = −
{

f ′′

f
+

g ′′

g

}
. (7)

This can be put into a more tractable form if we write the metric as

ds2 = −2 du dv + S2(u)
{

e+X (u) dx2 + e−X (u)dy2
}
, (8)

then

Ruu = −1

2

{
4

S ′′

S
+ (X ′)2

}
. (9)

Now in vacuum we have

X ′ = 2
√
−S ′′/S , so that X (u) = 2

∫ u√
−S ′′/S du. (10)
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Linear Polarization

So the Rosen form for the + polarization is

ds2 = −2 du dv + S2(u)

{
exp

(
2

∫ u√
−S ′′/S du

)
dx2

+ exp

(
−2

∫ u√
−S ′′/S du

)
dy2

}
. (11)

We can explicitly construct a × polarization by rotating the solution for the +
polarization by 45◦ which gives us

ds2 = −2 du dv + S2(u)

{
cosh

(
2

∫ u√
−S ′′/S du

)
[dx2 + dy2]

+2 sinh

(
2

∫ u√
−S ′′/S du

)
dx dy

}
. (12)

Likewise we can form any linear polarization by a rotation in the xy plane.

Note here we have split gAB into a unit determinant matrix of hyperbolic
functions and an “envelope function” S(u).
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Arbitrary Polarization

Take an arbitrary, u dependent polarization, and consider the following metric
ansatz:

ds2 = −2 du dv + S2(u)
{

[cosh(X (u)) + cos(θ(u)) sinh(X (u))]dx2

+ 2 sin(θ(u)) sinh(X (u))dx dy

+ [cosh(X (u))− cos(θ(u)) sinh(X (u))]dy2
}
. (13)

This reduces to linear polarizations when θ(u) is a constant.
Now

Ruu = −1

2

{
4

S ′′

S
+ (X ′)2 + sinh2(X (u)) (θ′)2

}
. (14)

The vacuum equations are simply

4
S ′′

S
+ (X ′)2 + sinh2(X (u)) (θ′)2 = 0. (15)
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Arbitrary Polarization

Introduce a dummy function L(u) and split:

4
S ′′

S
+ (L′)2 = 0, (16)

(L′)2 = (X ′)2 + sinh2(X (u)) (θ′)2. (17)

Equation (16) is the equation that had to be solved for linear polarization.
The second of these equations can be rewritten as

dL2 = dX 2 + sinh2(X ) dθ2, (18)

and is the statement that L can be interpreted as distance in the 2-dimensional
hyperbolic plane H2.

Thus if we pick an arbitrary curve in the (X , θ) plane and find its length, L(u)
then solve for S(u) we have the solution for an arbitrary polarization.
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Comparison to EM waves

Compare this situation with electromagnetic waves. A arbitrary polarization can
be written as

~E (u) = Ex(u) x̂ + Ey (u) ŷ , (19)

without further constraint, so could be viewed as a walk in the (Ex ,Ey ) plane.
Or alternatively, with a coordinate transform,

~E (u) = E (u) cos θ(u) x̂ + E (u) sin θ(u) ŷ . (20)

So an arbitrary polarization can be viewed as a random walk in the (E , θ) plane,
where the (E , θ) plane has the natural Euclidean metric

dL2 = dE 2 + E 2 dθ2 (21)

In contrast we are now dealing with a walk in the hyperbolic plane H2.

We also have a remaining equation to solve for S(u) due to the inherent
nonlinearities in strong field gravity
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Circular Polarization

As an example, consider circular polarization in the Rosen form.

For this we want θ(u) to progress linearly with a constant distortion, X (u)

θ(u) = Ω0 u; X (u) = X0. (22)

So

ds2 = −2 du dv + S2(u)
{

[cosh(X0) + cos(Ω0 u) sinh(X0)]dx2

+ 2 sin(Ω0u) sinh(X0)dx dy

+ [cosh(X0)− cos(Ω0u) sinh(X0)]dy2
}
. (23)
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Circular Polarization

The only nontrivial component of the Ricci tensor is then

Ruu = −1

2

{
4

S ′′

S
+ sinh2(X0) Ω2

0

}
. (24)

The vacuum equations are can be solved for

S(u) = S0 cos

{
sinh(X0) Ω0 (u − u0)

2

}
. (25)

So we have fully solved circular polarization in the Rosen form

This agrees with the limit of weak field gravity, which corresponds to X0 � 1 so
S ≈ S0 and

ds2 ≈ −2 du dv + dx2 + dy2 + X0

{
cos(Ω0 u)[dx2 − dy2] + 2 sin(Ω0 u) dx dy

}
.

(26)

Bethan Cropp, Matt Visser General polarization modes for the Rosen gravitational wave



Rosen form in arbitrary dimensions
Consider a pp wave in Rosen form with d⊥ dimensions perpendicular
to the direction of travel. Again

Ruu = −
{

1

2
gAB g ′′AB −

1

4
gAB g ′BC gCD g ′DA

}
. (27)

Split gAB(u) into a “envelope” S(u) and a unit determinant ĝAB(u)

gAB(u) = S2(u) ĝAB(u), (28)

Calculating the various components in the Ricci tensor, using the relation

[ĝAB ĝ ′AB ] = 0, (29)

And differentiating,

[ĝAB ĝ ′′AB ]− [ĝAB ĝ ′BC ĝCD ĝ ′DA] = 0. (30)

It is found that

Ruu = −d⊥
S ′′

S
− 1

2
[ĝAB ĝ ′BC ĝCD ĝ ′DA]. (31)

By splitting the metric we have simplified the vacuum equations, decoupling the
parts depending on the “envelope” and the “direction of oscillation”.
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Rosen form in arbitrary dimensions

Consider the set SS(R, d⊥) of unit determinant real symmetric matrices and the
Riemannian metric

dL2 = Tr
{

[ĝ ]−1 d[ĝ ] [ĝ ]−1 d[ĝ ]
}
. (32)

Then

Ruu = −1

2

{
2d⊥

S ′′(u)

S(u)
+

(
dL

du

)2
}
. (33)

The vacuum Einstein equations reduce to

dL

du
=

√
−2d⊥

S ′′

S
; L(u) =

∫ u
√
−2d⊥

S ′′

S
du. (34)

An arbitrary polarization of a vacuum Rosen wave is a random walk in SS(R, d⊥),
with distance along the walk L(u) being related to the envelope function S(u) as
above.
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Summary

• Arbitrary polarizations, while trivial in the Brinkmann form, pose a difficulty
in the Rosen form.

• We have made progress on this by splitting the relevant equations into an
“envelope” function and a unit determinant polarization matrix.

• The vacuum equations reduce to a differential equation regarding the
envelope and a random walk in polarization space.

• This has been generalized to arbitrary dimensions.

• Based on this we can construct arbitrary polarisation states, and in particular
have constructed a circularly polarized strong field wave in Rosen form.
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