Quasinormal modes

Quasinormal modes for the charged Vaidya metric

Cecilia Chirenti^{1,2} and Alberto Saa³

¹Centro de Matemática, Computação e Cognição, UFABC, Santo André, Brazil
 ²Max Planck Institute for Gravitational Physics, Potsdam, Germany
 ³Departamento de Física Matemática, IMECC-UNICAMP, Campinas, Brazil

Granada, September 9th 2010.

Plan of the talk

Time dependent charged black holes The basic idea

Scalar perturbations Klein-Gordon equation

Quasinormal modes Numerical Results

Conclusions

Time dependent charged black holes	Scalar perturbations	Quasinormal modes	Conclusions
●00	000	0000	
The basic idea			

The generalized charged Vaidya metric in double null coordinates

- line element $ds^2 = -2f(u, v)dudv + r^2(u, v)d\Omega_{n-2}^2$,
- energy-momentum tensor $T_{\mu\nu} = \frac{1}{8\pi} h(u,v) k_{\mu} k_{\nu}$,
- Einstein equations

$$f = 2Br_{,u}$$

$$r_{,v} = -B\left(1 - \frac{2m}{(n-3)r^{n-3}} - \frac{2\Lambda r^2}{(n-2)(n-1)} + \frac{2q^2}{(n-2)(n-3)r^{2(n-3)}}\right)$$

$$h = -2\left(\frac{n-2}{n-3}\right)\frac{B}{r^{n-2}}\left(\dot{m} - \frac{2q\dot{q}}{(n-2)r^{n-3}}\right)$$

< (1) > < (2) > <

3

Time dependent charged black holes	Scalar perturbations	Quasinormal modes	Conclusions
⊙●○	000	0000	
The basic idea			

The physical picture

Reissner Nordström black hole

Time dependent charged black holes	Scalar perturbations	Quasinormal modes	Conclusions
00●	000	0000	
The basic idea			

The physical picture

Time-dependent solutions: variable mass and constant charge

Time dependent charged black holes	Scalar perturbations	Quasinormal modes	Con clusion s
000	●00	0000	
Klein-Gordon equation			

Perturbation equations

► Klein-Gordon equation in the Vaidya background ⇒ scalar perturbation ⇒ scalar QNMs

$$rac{1}{\sqrt{-g}}\left(\sqrt{-g}g^{\mu
u}\Psi_{,
u}
ight)_{,\mu}=0\,.$$

for the general case

$$\varphi_{,uv}+V(u,v)\varphi=0\,,$$

with the potential V(u, v) given by

$$V(u, v) = \frac{f}{2} \left(\frac{\ell(\ell+n-3)}{r^2} + \frac{(n-2)(n-4)}{4r^2} + \frac{(n-2)^2m}{2(n-3)r^{n-1}} - \frac{n\Lambda}{2(n-1)} - \frac{(3n-8)q^2}{2(n-3)r^{2(n-2)}} \right).$$

where

$$\Psi(u, v, \theta_1, \dots, \theta_{n-2}) = \sum_{\ell, m} r^{-\frac{n-2}{2}} \varphi(u, v) Y_{\ell m}(\theta_1, \dots, \theta_{n-2}).$$

Time dependent charged black holes	Scalar perturbations	Quasinormal modes	Conclusions
000	○●○	0000	
Klein-Gordon equation			

Numerical integration

▶ 1st step: solve for the background to get r(u, v).

2nd step: solve the perturbation equation on the background.

$$\varphi(N) = \varphi(W) + \varphi(E) - \varphi(S) - \Delta u \Delta v V(X) \frac{\varphi(W) + \varphi(E)}{2} + O(\Delta^4).$$

▶ 3rd step: obtain the time-dependent scalar field on a fixed position $\varphi(v)$ and then calculate the frequencies ω_r and ω_i with a least-square fit

$$\varphi = A e^{\omega_i v} \sin(\omega_r v + \delta).$$

Time dependent charged black holes	Scalar perturbations
	000

Quasinormal modes

Klein-Gordon equation

Numerical integration

æ

Time dependent charged black holes 000	Scalar perturbations 000	Quasinormal modes ●000	Conclusions
Numerical Results			

Preliminary tests

- Tests performed for Schwarzschild and RN black holes.
- QNM known values reproduced with good accuracy.

Time dependent charged black holes	Scalar perturbations	Quasinormal modes	Conclusions
000	000	0●00	
Numerical Results			

βĽ

Non-adiabatic behavior

- variable charge and constant mass m = 0.5.
- it is possible to control how "fast" the variations are.

・ロト ・回ト ・ヨト・

-

э

Time	dep en den t	charged	black	holes	

Scalar perturbations

Quasinormal modes

UFABC

Numerical Results

Towards an extremal RN black hole

- ▶ $m_2 \rightarrow q$
- correct asymptotic results are recovered
- do we trust these results? (consistency test)

< ロト < 回 > < 三 > .

э

æ

Time dependent charged black holes	Scalar perturbations 000	Quasinormal modes 000●	Conclusions
Numerical Results			

Formation of a naked singularity?

- using the choice of a final mass m₂ < q,
- the code crashes when m(v) = q, but before it crashes...

< A

Conclusions

- Numerical setup accurately reproduces QNMs from scalar perturbations in equilibrium configurations.
- Deviations from the equilibrium frequency values were obtained and characterized.
- Non-adiabatic behavior is constrained by the threshold given by $r''_{+}(v) < \omega_i(v)$.
- ► For the future: analyze QNMs from gravitational perturbations.
- Possible observational consequences? A steadily accreting black hole could present QNMs which deviate from the equilibrium values.