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» Main goal : finding p-brane type solutions of supergravity theories in an
algorithmic manner. We consider both time-like branes, as well as
space-like branes.

» Strategy : use the fact that, in case symmetry is present, the branes are
described by geodesic motion on a certain moduli space (after performing a
certain dimensional reduction).

» In case the moduli space is a symmetric space, the geodesic equations that
describe both time-like and space-like branes can be written in a specific
form : the Lax pair form.

» This rewriting establishes integrability. The explicit integration can
moreover be done in an algorithmic manner.

» In this way, one can find (after oxidation) cosmological solutions of
SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS)
without relying on supersymmetry arguments.
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» p-brane solutions in ¢ dimensions are charged electrically under A, or
magnetically under A;_,,_3.

ds; = CZA(r)Ude“de +e20) (ar? + rdef,_p_z) (time — like) ,
ds?2 = M5, dxtdx” 4 B0 (—d? + rszﬁ_p_Z) (space — like)

» Transversal symmetries : SO(d —p — 1) or SO(d —p — 2, 1)

» Worldvolume symmetries contain an R”*! subgroup of translations —
matter fields are translation invariant.

» For the purpose of finding solutions : effectively dimensionally reduce the
solutions over its worldvolume :

p-brane in d dim. — —1-braneinD =d — p — 1 dim.

§= /de A {R— ;Gij(@@cb"w} :
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Branes as geodesics on moduli space

» E.o.m.’s for the scalars decouple from these for the metric. The e.0o.m.’s for
the scalars reduce to geodesic equations in the moduli space with metric

Gij(9).

» Main difference between time-like and space-like branes:

time-like branes space-like branes

reduction includes time reduction does not include time

dsp = f2(r)dr* + g*(r)gadx“dx? | ds}, = —f2(1)dr* + g*(1)gapdx“dx?

pseudo-Riem. moduli space Riem. moduli space

G
H*

G
H

with H* non-compact with H compact

[[v][*>0,<0,=0 [[v][* >0

relevant for black holes relevant for cosmologies
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The geodesic equations in Lax pair form

»

v

v

Consider a symmetric space G/H (Riem. or pseudo-Riem.). The Cartan
decomposition reads

G=H+K,

MH cH, MK cK, [K,K] CH.
Upon choosing a coset representative (¢! (1)), one can build the
Maurer-Cartan form
d

L= gi)’]L’li}L: W+V,

7 -1
Q=L 597

with W e H, V € K.
The scalar field action reads

S = /dtTr(VV) x /dtG,,(gb)é’g%’.

Varying this action, one is led to the following equations of motion:

4y _wow
de VY



The geodesic equations in Lax pair form

» The equation

4y _w,w
dt - b b

constitutes the so-called Lax equation. It reproduces the geodesic equations
as a matrix differential equation.



The geodesic equations in Lax pair form

» The equation

4y _w,w
dt - b b

constitutes the so-called Lax equation. It reproduces the geodesic equations
as a matrix differential equation.

> Note : V(1) = V(¢(1), &(1), W(1) = W(e(0), o(1)).



The geodesic equations in Lax pair form

» The equation

4y _w,w
dt - b b

constitutes the so-called Lax equation. It reproduces the geodesic equations
as a matrix differential equation.

> Note : V(1) = V(¢(1), &(1), W(1) = W(e(0), o(1)).

» For symmetric spaces, one can work in solvable gauge :
L=expb, b € Borel algebra.

”L = exponential of upper triangular matrix”.



The geodesic equations in Lax pair form

» The equation

4y _w,w
dt - b b

constitutes the so-called Lax equation. It reproduces the geodesic equations
as a matrix differential equation.

> Note : V(1) = V(¢(1), &(1), W(1) = W(e(0), o(1)).

» For symmetric spaces, one can work in solvable gauge :
L=expb, b € Borel algebra.

”L = exponential of upper triangular matrix”.

» In solvable gauge
W=Vyo— V.



The geodesic equations in Lax pair form

» The equation

4y _w,w
dt - b b

constitutes the so-called Lax equation. It reproduces the geodesic equations
as a matrix differential equation.

> Note : V(1) = V(¢(1), &(1), W(1) = W(e(0), o(1)).

» For symmetric spaces, one can work in solvable gauge :
L=expb, b € Borel algebra.

”L = exponential of upper triangular matrix”.
» In solvable gauge
W=Vy—Vs.

» The Lax equation, with W obeying the latter equation, can be solved
algorithmically, for generic initial condition V(t = 0) = V.
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» In order to solve the Lax equation, one needs to specify an initial condition
V. This is taken to be an arbitrary (constant) element of K.

» In general :

H = Span{E*+0(E")},
K = Span{H;, (E*—0(E¥)} .
with
space — like branes : §(E*) = —E %= —(ET,
time — like branes : O(E®) = —(—1)%@g= = _(—1)f()(E)T

Bo(c) = grading of root o with respect to a generator associated with the
internal time direction. It takes on values 0, 1, 2 on positive values.
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Initial conditions

» Strategy for parametrizing initial values : parametrize V|, as
Vo = h(expQn)h™", heH,

with Qy the so-called normal form.

» Space-like branes : elements of K are either diagonal, or symmetric =
they can be diagonalized using H-transformations. The eigenvalues are
moreover real.

» Time-like branes : elements of K are either diagonal, symmetric or
anti-symmetric. The normal form is no longer diagonal. Generically
(Bergshoeff et al. : arXiv:0806.2310)

Ov € {(z[o((zl”ﬂfi)pxso(l,l)"}@Nil

complex eigval. real eigval. nilpotent el.
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» Generators, coset representative and Lax operator

1 0 0 1 b(1)
_ _ _ X0E H
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» Space-like branes (S £(2,R)/ SO(2)):

H = Span{(E—E")}, KSpan{H,(E+ET)},

Vo = (Z _ba>, a,beR

Vy is always diagonalizable with real eigenvalues ++v/a? + b2.

§H
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The simplest example : S /(2, R)

» Time-like branes (S ¢(2,R)/SO(1, 1)):

H = Span{(E+E")}, KSpan{H,\%(EET)},

Vo = (_“b _ba>, a,beR

We now have to distinguish three cases:

e &> > b : normal form is diagonal with 2 real eigenvalues :
A+ = ++v/a? — b2. Corresponds to geodesics with positive norm squared.
e &> < b?: 2 complex eigenvalues A, A = %iv/a? — b2. Corresponds to
geodesics with negative norm squared.

o A =1
1 1
VOO‘(—l —1)

This case is nilpotent of degree 2 : Vo = 0. Corresponds to null geodesics.
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A universal integration algorithm

» Mathematicians have developed an integration algorithm that solves the
Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).

» This algorithm is universal : works both for Riemannian and
pseudo-Riemannian cosets. The result is a solution V(#) such that

d

dr

» The version of Kodama et al. only incorporates diagonalizable initial
conditions (real/complex eigenvalues).

Vsol(t) = [Vsol(t)a Vsol >0(t) - Vsol <O(t)] .

» We gave however an integration formula that works for generic initial
conditions, so including the nilpotent cases (Chemissany et al. 2009).
Result:

Vog = Vpg(1, Vo) -

» Comparing Vi (1) with the expression of V (¢, ¢) = iterative system of
first order equations (solvable gauge!). Can be solved easily, leading to
solutions for the scalar fields.
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Lax Integration algorithms

» All integration algorithms developed so far focus on giving solution for the
Lax operator V, which is somewhat sufficient to obtain the solutions for the
scalar fileds.

» However, this requires solving a second order differential equations which
can be solved explicitly.

» For practical reasons, we found it desirable to circumvent this second
integration step by proposing and proving an integration formula (
Chemissany et al. 2010).



>

>

Proving an integration formula is one thing: establishing the complete
inetgrability of the geodesic equations is a separate issue.

Liouville Integrability: is the statement that there exist n functionally
independent constant of motion #;(Z) (hamiltonians):

{HhHJ} =0

The geodesic Lagrangian reads

1 1 ...
L= EgABYAYB = igij(bl(f)/a V=YK,

Phase space variable are denoted by {¢', P;}, thereby the geodesic Eqs take
the form

Z+{H,Z} =0.
Using the poisson bracket on the phase space and Y4 = g48V}'P; together
with MC Egs, we obtain

{Ya, Y5} = —f155Yc

This is the natural Poisson brackets on solv* induchﬂby }l&e}L‘i% qlgegrg.
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Proving an integration formula is one thing: establishing the complete
inetgrability of the geodesic equations is a separate issue.

Liouville Integrability: is the statement that there exist n functionally
independent constant of motion #;(Z) (hamiltonians):

{Hiij} =0

The geodesic Lagrangian reads

1 1 ...
£ = EgABYAYB = 5glj¢l¢/7 V = YAKA

Phase space variable are denoted by {¢', P;}, thereby the geodesic Eqs take
the form .
Z+{H,Z} =0.

Using the poisson bracket on the phase space and Y4 = g48V;'P; together
with MC Egs, we obtain
{Ya, Y8} = —fas“Yc

This is the natural Poisson brackets on solv* induced by the Lie algebra.



>

: Consider the following matrix
Q = L(r)V(r)L(r)™

g
’ dr
The n components of Noether charge matrix defined by

Q4 ~ Tr(QTx)
» One can derive the following relations between Q4 and Y,

Oa = L4%Yg
» This implies

{04, Y5} =0,

{04, 08} = fas“Qc

«O>» «F»r» « >

«E>

nae
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> : Consider the following matrix
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0=LVLM™,

The n components of Noether charge matrix defined by

On ~ Tr(QTy)

» One can derive the following relations between Q4 and Y4

04 = LA"Yp

» This implies
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> : Establishing Liouville integrability of the first order problem

Yo+ {H, Y4} =0

» Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability
implies the existence of symplectic foliation for which the hamiltonian
flows are integrable on the symplectic leaves.

» Each leaf is nothing but the co-adjoint orbit of an element (Y*) of Solv*.

» Denote

dim(coset) = n, dim(leaf) = 2hop, 2ho = rank(f13°Y¢)

» We proved the existence of (n — ko) constants of motion in involution
where:

ho — corresponds to Hamilt. in involution on symplectic leaf.
n — 2ho — are referred to as Casimirs defined as

{H(Y),Ya} = 0.

«O>» «Fr «E» <

it
v
it

nae
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> : Establishing Liouville integrability of the first order problem

Yo+ {H, Y4} =0

» Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability
implies the existence of symplectic foliation for which the hamiltonian
flows are integrable on the symplectic leaves.

» Each leaf is nothing but the co-adjoint orbit of an element (Y*) of Solv*.
» Denote

dim(coset) = n, dim(leaf) = 2hop, 2ho = rank(f13°Y¢)

» We proved the existence of (n — hg) constants of motion in involution
where:
ho — corresponds to Hamilt. in involution on symplectic leaf.
n — 2ho — are referred to as Casimirs defined as

{H<Y)7 YA} =0.



» Let’s denote the Hamilt. and the Casimirs on the leaves by

Ho(Y), a=1,--- ho;  He(Y), C=1,---n—2ho.

» We find 2(n — ho) constants of motion which Poisson commute

Ha(Ya), He(Ya), Ha(Qa), He(On),

where

» The H,(Qa), resp. H¢(Q4) are obtained by replacing Y4 by Q4 in
Ha(YA)a Hf(YA)

» The only independent quantities are H,(Y), H¢(Y) and H,(Q). This
therefore gives a total of

(n—ho)+ho=n

» Thereby proving Liouville integrability of the second order problem.

«O>» «F>» «E>» «E>»

nae



Liouville Integrability

» Let’s denote the Hamilt. and the Casimirs on the leaves by

Ho(Y), a=1,--- ho; He(Y), €=1,---n—2hop.



Liouville Integrability

» Let’s denote the Hamilt. and the Casimirs on the leaves by

Ho(Y), a=1,--- ho; He(Y), €=1,---n—2hop.

» We find 2(n — ho) constants of motion which Poisson commute

Ha(Y4), He(Ya), Ma(Q4), He(Qa),

where



Liouville Integrability

» Let’s denote the Hamilt. and the Casimirs on the leaves by

Ho(Y), a=1,--- ho; He(Y), €=1,---n—2hop.

» We find 2(n — ho) constants of motion which Poisson commute

Ha(Y4), He(Ya), Ma(Q4), He(Qa),

where

» The H,(Q4), resp. H¢(Qa4) are obtained by replacing Y4 by Q4 in
Ha(Ya), He(Ya).



Liouville Integrability

» Let’s denote the Hamilt. and the Casimirs on the leaves by

Ho(Y), a=1,--- ho; He(Y), €=1,---n—2hop.

» We find 2(n — ho) constants of motion which Poisson commute

Ha(Y4), He(Ya), Ma(Q4), He(Qa),

where

» The H,(Q4), resp. H¢(Qa4) are obtained by replacing Y4 by Q4 in
Ha(Ya), He(Ya).

» The only independent quantities are H,(Y), H¢(Y) and H,(Q). This
therefore gives a total of

(n7h0)+h0:n



Liouville Integrability

» Let’s denote the Hamilt. and the Casimirs on the leaves by

Ho(Y), a=1,--- ho; He(Y), €=1,---n—2hop.

» We find 2(n — ho) constants of motion which Poisson commute

Ha(Y4), He(Ya), Ma(Q4), He(Qa),

where

» The H,(Q4), resp. H¢(Qa4) are obtained by replacing Y4 by Q4 in
Ha(Ya), He(Ya).

» The only independent quantities are H,(Y), H¢(Y) and H,(Q). This
therefore gives a total of

(n7h0)+h0:n

» Thereby proving Liouville integrability of the second order problem.



» We have established new insights into the solvability and integrability of
the geodesic eqs following from reducing symmetric supergravities over
the timelike direction.

» We have presented a recursive but closed formula for the coset
representative describing a generic geodesic solution.

» Our results solve an open-standing question about the existence of a fake
superpotential (Hamilton-Jacobi) for black hole solutions.

» Since Liouville Integrability implies HJ integrability we have proven the
(local) existence of a fake superpotential for all stationary and spherically
symmetric BH’s.

» We have given the physical interpretation for most of the Hamiltonians,
e.g. the polynomial constants keep track of the regularity and extremality
of the solutions etc..

» We anticipate to investigate the Hamilt. in more involved models, such as
the STU model.

» We believe that the » Hamilt. will provide a complete set of commuting
observables for the quantum description of BH.

«Or «F»r <
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