Integrating geodesic flows : finding supergravity cosmologies and black holes

Wissam Chemissany U of L, Alberta, Canada

Based on: W.C, P. Fré, Alexender Sorin, arXiv:0904.0801 W. C, M. Trigiante, T. Van Riet, Jan.R., arXiv:0903.2777 W. C, P. Fré, A. Sorin, M. Trigiante, T. Van Riet, Jan.Rosseel, arXiv:1007.3209 W.C, M. Walton, to appear

ERE2010, 06/09/2010

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

1. Introduction

- 2. Branes as geodesics on moduli space
- 3. The geodesic equations in Lax pair form

4. Initial conditions

- 5. The simplest example : S $\ell(2,\mathbb{R})$
- 6. A universal integration algorithm

- 7. Liouville Integrability
- 8. Conclusion and Outlook

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- ▶ In case the moduli space is a *symmetric space*, the geodesic equations that describe *both* time-like and space-like branes can be written in a specific form : the Lax pair form.
- ► This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- ▶ In case the moduli space is a *symmetric space*, the geodesic equations that describe *both* time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

▶ *p*-brane solutions in *d* dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$ds_d^2 = e^{2A(r)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(r)} (dr^2 + r^2 d\Omega_{d-p-2}^2) \quad \text{(time-like)}, ds_d^2 = e^{2A(t)} \delta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(t)} (-dt^2 + r^2 d\Sigma_{d-p-2}^2) \quad \text{(space-like)}$$

- ► Transversal symmetries : SO(d p 1) or SO(d p 2, 1)
- ▶ Worldvolume symmetries contain an ℝ^{p+1} subgroup of translations → matter fields are translation invariant.
- ► For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :

p-brane in *d* dim. $\rightarrow -1$ -brane in D = d - p - 1 dim

$$S = \int d^D x \sqrt{|g|} \left\{ R - \frac{1}{2} G_{ij}(\phi) \partial \phi^i \partial \phi^j \right\} \,.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

▶ *p*-brane solutions in *d* dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$ds_d^2 = e^{2A(r)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(r)} (dr^2 + r^2 d\Omega_{d-p-2}^2) \quad \text{(time-like)}, ds_d^2 = e^{2A(t)} \delta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(t)} (-dt^2 + r^2 d\Sigma_{d-p-2}^2) \quad \text{(space-like)}$$

- ► Transversal symmetries : SO(d p 1) or SO(d p 2, 1)
- ▶ Worldvolume symmetries contain an ℝ^{p+1} subgroup of translations → matter fields are translation invariant.
- ► For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :

p-brane in *d* dim. $\longrightarrow -1$ -brane in D = d - p - 1 dim $S = \int d^{D}x \sqrt{|g|} \left\{ R - \frac{1}{2} G_{ij}(\phi) \partial \phi^{i} \partial \phi^{j} \right\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ *p*-brane solutions in *d* dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$ds_d^2 = e^{2A(r)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(r)} (dr^2 + r^2 d\Omega_{d-p-2}^2) \quad \text{(time-like)}, ds_d^2 = e^{2A(t)} \delta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(t)} (-dt^2 + r^2 d\Sigma_{d-p-2}^2) \quad \text{(space-like)}$$

- ► Transversal symmetries : SO(d p 1) or SO(d p 2, 1)
- ▶ Worldvolume symmetries contain an ℝ^{p+1} subgroup of translations → matter fields are translation invariant.
- ► For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :

p-brane in *d* dim. $\longrightarrow -1$ -brane in D = d - p - 1 dim $S = \int d^D x \sqrt{|g|} \left\{ R - \frac{1}{2} G_{ij}(\phi) \partial \phi^i \partial \phi^j \right\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

▶ *p*-brane solutions in *d* dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$ds_d^2 = e^{2A(r)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(r)} (dr^2 + r^2 d\Omega_{d-p-2}^2) \quad \text{(time-like)}, ds_d^2 = e^{2A(t)} \delta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(t)} (-dt^2 + r^2 d\Sigma_{d-p-2}^2) \quad \text{(space-like)}$$

- ► Transversal symmetries : SO(d p 1) or SO(d p 2, 1)
- ▶ Worldvolume symmetries contain an ℝ^{p+1} subgroup of translations → matter fields are translation invariant.
- For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :

p-brane in *d* dim. $\longrightarrow -1$ -brane in D = d - p - 1 dim. $S = \int d^{D}x \sqrt{|g|} \left\{ R - \frac{1}{2} G_{ij}(\phi) \partial \phi^{i} \partial \phi^{j} \right\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- E.o.m.'s for the scalars decouple from these for the metric. The e.o.m.'s for the scalars reduce to *geodesic equations* in the moduli space with metric $G_{ij}(\phi)$.
- ▶ Main difference between time-like and space-like branes:

time-like branes	space-like branes
reduction includes time	reduction does not include time
$\mathrm{d}s_D^2 = f^2(r)\mathrm{d}r^2 + g^2(r)g_{ab}\mathrm{d}x^a\mathrm{d}x^b$	$\mathrm{d}s_D^2 = -f^2(t)\mathrm{d}t^2 + g^2(t)g_{ab}\mathrm{d}x^a\mathrm{d}x^b$
pseudo-Riem. moduli space	Riem. moduli space
$\frac{G}{H^*}$ with H^* non-compact	$\frac{G}{H}$ with H compact
$ v ^2 > 0, < 0, = 0$	$ v ^2 > 0$

- E.o.m.'s for the scalars decouple from these for the metric. The e.o.m.'s for the scalars reduce to *geodesic equations* in the moduli space with metric $G_{ij}(\phi)$.
- ▶ Main difference between time-like and space-like branes:

time-like branes	space-like branes
reduction includes time	reduction does not include time
$ds_D^2 = f^2(r)dr^2 + g^2(r)g_{ab}dx^a dx^b$	$\mathrm{d}s_D^2 = -f^2(t)\mathrm{d}t^2 + g^2(t)g_{ab}\mathrm{d}x^a\mathrm{d}x^b$
pseudo-Riem. moduli space	Riem. moduli space
$\frac{G}{H^*}$ with H^* non-compact	$\frac{G}{H}$ with H compact
$ \mathbf{v} ^2 > 0, < 0, = 0$	$ v ^2 > 0$
relevant for black holes	relevant for cosmologies

► Consider a symmetric space *G*/*H* (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$\begin{split} \mathbb{G} &= \mathbb{H} + \mathbb{K}\,, \\ [\mathbb{H},\mathbb{H}] &\subset \mathbb{H}\,, \ [\mathbb{H},\mathbb{K}] \subset \mathbb{K}\,, \ [\mathbb{K},\mathbb{K}] \subset \mathbb{H}\,. \end{split}$$

► Upon choosing a coset representative L(φ^I(t)), one can build the Maurer-Cartan form

$$\Omega = \mathbb{L}^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{L} = \dot{\phi}^I \mathbb{L}^{-1} \frac{\partial}{\partial \phi^I} \mathbb{L} = W + V \,,$$

with $W \in \mathbb{H}, V \in \mathbb{K}$.

► The scalar field action reads

$$S = \int \mathrm{d}t \, \mathrm{Tr}(VV) \propto \int \mathrm{d}t \, G_{IJ}(\phi) \dot{\phi}^I \dot{\phi}^J \, .$$

▶ Varying this action, one is led to the following equations of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = [V, W] \,.$$

► Consider a symmetric space *G*/*H* (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$\begin{split} \mathbb{G} &= \mathbb{H} + \mathbb{K} \,, \\ [\mathbb{H},\mathbb{H}] \subset \mathbb{H} \,, \ [\mathbb{H},\mathbb{K}] \subset \mathbb{K} \,, \ [\mathbb{K},\mathbb{K}] \subset \mathbb{H} \,. \end{split}$$

► Upon choosing a coset representative L(φ^I(t)), one can build the Maurer-Cartan form

$$\Omega = \mathbb{L}^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{L} = \dot{\phi}^{I} \mathbb{L}^{-1} \frac{\partial}{\partial \phi^{I}} \mathbb{L} = W + V,$$

with $W \in \mathbb{H}$, $V \in \mathbb{K}$.

▶ The scalar field action reads

$$S = \int \mathrm{d}t \,\mathrm{Tr}(VV) \propto \int \mathrm{d}t \,G_{IJ}(\phi) \dot{\phi}^I \dot{\phi}^J \,.$$

▶ Varying this action, one is led to the following equations of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = \left[V,W\right].$$

► Consider a symmetric space *G*/*H* (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$\begin{split} \mathbb{G} &= \mathbb{H} + \mathbb{K} \,, \\ [\mathbb{H},\mathbb{H}] \subset \mathbb{H} \,, \ [\mathbb{H},\mathbb{K}] \subset \mathbb{K} \,, \ [\mathbb{K},\mathbb{K}] \subset \mathbb{H} \,. \end{split}$$

► Upon choosing a coset representative L(φ^I(t)), one can build the Maurer-Cartan form

$$\Omega = \mathbb{L}^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{L} = \dot{\phi}^I \mathbb{L}^{-1} \frac{\partial}{\partial \phi^I} \mathbb{L} = W + V,$$

with $W \in \mathbb{H}$, $V \in \mathbb{K}$.

The scalar field action reads

$$S = \int \mathrm{d}t \, \mathrm{Tr}(VV) \propto \int \mathrm{d}t \, G_{IJ}(\phi) \dot{\phi}^I \dot{\phi}^J \, .$$

▶ Varying this action, one is led to the following equations of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = \left[V,W\right].$$

・ロト・日本・日本・日本・日本

► Consider a symmetric space *G*/*H* (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$\begin{split} \mathbb{G} &= \mathbb{H} + \mathbb{K} \,, \\ [\mathbb{H},\mathbb{H}] \subset \mathbb{H} \,, \ [\mathbb{H},\mathbb{K}] \subset \mathbb{K} \,, \ [\mathbb{K},\mathbb{K}] \subset \mathbb{H} \,. \end{split}$$

► Upon choosing a coset representative L(φ^I(t)), one can build the Maurer-Cartan form

$$\Omega = \mathbb{L}^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{L} = \dot{\phi}^I \mathbb{L}^{-1} \frac{\partial}{\partial \phi^I} \mathbb{L} = W + V,$$

with $W \in \mathbb{H}$, $V \in \mathbb{K}$.

The scalar field action reads

$$S = \int \mathrm{d}t \,\mathrm{Tr}(VV) \propto \int \mathrm{d}t \,G_{IJ}(\phi) \dot{\phi}^I \dot{\phi}^J \,.$$

Varying this action, one is led to the following equations of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = \left[V,W\right].$$

The equation

$$\frac{\mathrm{d}}{\mathrm{d}t}V=\left[V,W\right],$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

- ► Note : $V(t) = V(\phi(t), \dot{\phi}(t)), W(t) = W(\phi(t), \dot{\phi}(t)).$
- ▶ For symmetric spaces, one can work in *solvable gauge* :

 $\mathbb{L} = \exp b$, $b \in \text{Borel algebra}$.

"L = exponential of upper triangular matrix".

In solvable gauge

$$W = V_{>0} - V_{<0}$$
.

The equation

$$\frac{\mathrm{d}}{\mathrm{d}t}V=\left[V,W\right],$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

► Note : $V(t) = V(\phi(t), \dot{\phi}(t)), W(t) = W(\phi(t), \dot{\phi}(t)).$

▶ For symmetric spaces, one can work in *solvable gauge* :

 $\mathbb{L} = \exp b$, $b \in \text{Borel algebra}$.

"L = exponential of upper triangular matrix".

In solvable gauge

$$W = V_{>0} - V_{<0}$$
.

The equation

$$\frac{\mathrm{d}}{\mathrm{d}t}V=\left[V,W\right],$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

► Note : $V(t) = V(\phi(t), \dot{\phi}(t)), W(t) = W(\phi(t), \dot{\phi}(t)).$

► For symmetric spaces, one can work in *solvable gauge* :

 $\mathbb{L} = \exp b$, $b \in \text{Borel algebra}$.

"L = exponential of upper triangular matrix".

► In solvable gauge

$$W = V_{>0} - V_{<0}$$
.

The equation

$$\frac{\mathrm{d}}{\mathrm{d}t}V=\left[V,W\right],$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

► Note : $V(t) = V(\phi(t), \dot{\phi}(t)), W(t) = W(\phi(t), \dot{\phi}(t)).$

► For symmetric spaces, one can work in *solvable gauge* :

 $\mathbb{L} = \exp b$, $b \in \text{Borel algebra}$.

"L = exponential of upper triangular matrix".

In solvable gauge

$$W = V_{>0} - V_{<0}$$
.

The equation

$$\frac{\mathrm{d}}{\mathrm{d}t}V=\left[V,W\right],$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

► Note : $V(t) = V(\phi(t), \dot{\phi}(t)), W(t) = W(\phi(t), \dot{\phi}(t)).$

► For symmetric spaces, one can work in *solvable gauge* :

 $\mathbb{L} = \exp b$, $b \in \text{Borel algebra}$.

"L = exponential of upper triangular matrix".

In solvable gauge

$$W = V_{>0} - V_{<0}$$
.

- In order to solve the Lax equation, one needs to specify an initial condition V₀. This is taken to be an arbitrary (constant) element of K.
- ► In general :

$$\mathbb{H} = \operatorname{Span} \{ E^{\alpha} + \theta(E^{\alpha}) \} ,$$

$$\mathbb{K} = \operatorname{Span} \{ H_i, (E^{\alpha} - \theta(E^{\alpha})) \} .$$

with

space – like branes :
$$\theta(E^{\alpha}) = -E^{-\alpha} = -(E^{\alpha})^T$$
,
time – like branes : $\theta(E^{\alpha}) = -(-1)^{\beta_0(\alpha)}E^{-\alpha} = -(-1)^{\beta_0(\alpha)}(E^{\alpha})^T$.

 $\beta_0(\alpha) =$ grading of root α with respect to a generator associated with the internal time direction. It takes on values 0, 1, 2 on positive values.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- In order to solve the Lax equation, one needs to specify an initial condition V₀. This is taken to be an arbitrary (constant) element of K.
- ► In general :

$$\begin{split} \mathbb{H} &= \operatorname{Span} \left\{ E^{\alpha} + \theta(E^{\alpha}) \right\} \,, \\ \mathbb{K} &= \operatorname{Span} \left\{ H_i, (E^{\alpha} - \theta(E^{\alpha})) \right\} \,. \end{split}$$

with

space - like branes :
$$\theta(E^{\alpha}) = -E^{-\alpha} = -(E^{\alpha})^T$$
,
time - like branes : $\theta(E^{\alpha}) = -(-1)^{\beta_0(\alpha)}E^{-\alpha} = -(-1)^{\beta_0(\alpha)}(E^{\alpha})^T$.

 $\beta_0(\alpha) =$ grading of root α with respect to a generator associated with the internal time direction. It takes on values 0, 1, 2 on positive values.

• Strategy for parametrizing initial values : parametrize V_0 as

$$V_0 = h(\exp Q_N)h^{-1}, \qquad h \in H,$$

with Q_N the so-called *normal form*.

- Space-like branes : elements of K are either diagonal, or symmetric ⇒ they can be diagonalized using *H*-transformations. The eigenvalues are moreover real.
- ► Time-like branes : elements of K are either diagonal, symmetric or anti-symmetric. The normal form is no longer diagonal. Generically (Bergshoeff et al. : arXiv:0806.2310)

$$Q_N \in \left\{ \left(\frac{\mathfrak{sl}(2,\mathbb{R})}{\mathfrak{so}(1,1)} \right)^p \times \mathfrak{so}(1,1)^q \right\} \oplus \operatorname{Nil}$$

complex eigval. real eigval. nilpotent el.

• Strategy for parametrizing initial values : parametrize V_0 as

$$V_0 = h(\exp Q_N)h^{-1}, \qquad h \in H,$$

with Q_N the so-called *normal form*.

- Space-like branes : elements of K are either diagonal, or symmetric ⇒ they can be diagonalized using *H*-transformations. The eigenvalues are moreover real.
- ► Time-like branes : elements of K are either diagonal, symmetric or anti-symmetric. The normal form is no longer diagonal. Generically (Bergshoeff et al. : arXiv:0806.2310)

$$Q_N \in \left\{ \left(\mathfrak{sl}(2,\mathbb{R}) \atop \mathfrak{so}(1,1) \right)^p \times \mathfrak{so}(1,1)^q \right\} \oplus \mathrm{Nil}$$

complex eigval. real eigval. nilpotent el.

• Strategy for parametrizing initial values : parametrize V_0 as

$$V_0 = h(\exp Q_N)h^{-1}, \qquad h \in H_{\mathbb{R}}$$

with Q_N the so-called *normal form*.

- Space-like branes : elements of K are either diagonal, or symmetric ⇒ they can be diagonalized using *H*-transformations. The eigenvalues are moreover real.
- ► Time-like branes : elements of K are either diagonal, symmetric or anti-symmetric. The normal form is no longer diagonal. Generically (Bergshoeff et al. : arXiv:0806.2310)

$$Q_N \in \left\{ \left(rac{\mathfrak{sl}(2,\mathbb{R})}{\mathfrak{so}(1,1)}
ight)^p imes \mathfrak{so}(1,1)^q
ight\} \oplus \mathrm{Nil}$$

complex eigval. real eigval. nilpotent el.

Generators, coset representative and Lax operator

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbb{L} = e^{\chi(t)E} e^{\frac{\phi(t)}{2}H},$$
$$V = \begin{pmatrix} \frac{1}{2}\phi'[t] & \pm \frac{1}{2}e^{-\phi[t]}\chi'[t] \\ \frac{1}{2}e^{-\phi[t]}\chi'[t] & -\frac{1}{2}\phi'[t] \end{pmatrix}$$

Space-like branes (S $\ell(2, \mathbb{R})/$ SO(2)):

$$\mathbb{H} = \operatorname{Span}\left\{ (E - E^T) \right\}, \qquad \mathbb{K} = \operatorname{Span}\left\{ H, \frac{1}{\sqrt{2}}(E + E^T) \right\},$$
$$V_0 = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, \quad a, b \in \mathbb{R}$$

 V_0 is always diagonalizable with real eigenvalues $\pm \sqrt{a^2 + b^2}$.

Generators, coset representative and Lax operator

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbb{L} = e^{\chi(t)E} e^{\frac{\phi(t)}{2}H},$$
$$V = \begin{pmatrix} \frac{1}{2}\phi'[t] & \pm \frac{1}{2}e^{-\phi[t]}\chi'[t] \\ \frac{1}{2}e^{-\phi[t]}\chi'[t] & -\frac{1}{2}\phi'[t] \end{pmatrix}$$

Space-like branes (S $\ell(2, \mathbb{R})/$ SO(2)):

$$\mathbb{H} = \operatorname{Span}\left\{ (E - E^T) \right\}, \qquad \mathbb{K} = \operatorname{Span}\left\{ H, \frac{1}{\sqrt{2}}(E + E^T) \right\},$$
$$V_0 = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, \quad a, b \in \mathbb{R}$$

 V_0 is always diagonalizable with real eigenvalues $\pm \sqrt{a^2 + b^2}$.

• Time-like branes (S $\ell(2,\mathbb{R})/$ SO(1,1)):

$$\mathbb{H} = \operatorname{Span}\left\{ (E + E^{T}) \right\}, \qquad \mathbb{K} = \operatorname{Span}\left\{ H, \frac{1}{\sqrt{2}}(E - E^{T}) \right\},$$
$$V_{0} = \begin{pmatrix} a & b \\ -b & -a \end{pmatrix}, \quad a, b \in \mathbb{R}$$

We now have to distinguish three cases:

• $a^2 > b^2$: normal form is diagonal with 2 real eigenvalues: $\lambda_{\pm} = \pm \sqrt{a^2 - b^2}$. Corresponds to geodesics with positive norm squared.

a² < b² : 2 complex eigenvalues λ, λ
 [−] ±i√a² − b². Corresponds to geodesics with negative norm squared.

•
$$a^2 = b^2$$
:

$$V_0 \propto \left(\begin{array}{cc} 1 & 1\\ -1 & -1 \end{array}\right)$$

This case is nilpotent of degree 2 : $V_0^2 = 0$. Corresponds to null geodesics

• Time-like branes (S $\ell(2,\mathbb{R})/$ SO(1,1)):

$$\mathbb{H} = \operatorname{Span}\left\{ (E + E^{T}) \right\}, \qquad \mathbb{K} = \operatorname{Span}\left\{ H, \frac{1}{\sqrt{2}}(E - E^{T}) \right\},$$
$$V_{0} = \begin{pmatrix} a & b \\ -b & -a \end{pmatrix}, \quad a, b \in \mathbb{R}$$

We now have to distinguish three cases:

- $a^2 > b^2$: normal form is diagonal with 2 real eigenvalues: $\lambda_{\pm} = \pm \sqrt{a^2 - b^2}$. Corresponds to geodesics with positive norm squared.
- a² < b² : 2 complex eigenvalues λ, λ = ±i√a² b². Corresponds to geodesics with negative norm squared.
 a² = b²

:
$$V_0 \propto \left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array} \right)$$

This case is nilpotent of degree 2 : $V_0^2 = 0$. Corresponds to null geodesics

• Time-like branes (S $\ell(2,\mathbb{R})/$ SO(1,1)):

$$\mathbb{H} = \operatorname{Span}\left\{ (E + E^{T}) \right\}, \qquad \mathbb{K} = \operatorname{Span}\left\{ H, \frac{1}{\sqrt{2}}(E - E^{T}) \right\},$$
$$V_{0} = \begin{pmatrix} a & b \\ -b & -a \end{pmatrix}, \quad a, b \in \mathbb{R}$$

We now have to distinguish three cases:

- $a^2 > b^2$: normal form is diagonal with 2 real eigenvalues: $\lambda_{\pm} = \pm \sqrt{a^2 - b^2}$. Corresponds to geodesics with positive norm squared.
- $a^2 < b^2$: 2 complex eigenvalues $\lambda, \overline{\lambda} = \pm i\sqrt{a^2 b^2}$. Corresponds to geodesics with negative norm squared.

•
$$a^2 = b^2$$
 : $V_0 \propto \left(egin{array}{cc} 1 & 1 \ -1 & -1 \end{array}
ight)$

This case is nilpotent of degree 2 : $V_0^2 = 0$. Corresponds to null geodesics.

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution V_{sol}(t) such that

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{sol}}(t) = \left[V_{\mathrm{sol}}(t), V_{\mathrm{sol} > 0}(t) - V_{\mathrm{sol} < 0}(t) \right] \,.$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$V_{pq} = V_{pq}(t, V_0) \,.$$

• Comparing $V_{sol}(t)$ with the expression of $V(\phi, \dot{\phi}) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution V_{sol}(t) such that

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{sol}}(t) = \left[V_{\mathrm{sol}}(t), V_{\mathrm{sol} > 0}(t) - V_{\mathrm{sol} < 0}(t) \right] \,.$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$V_{pq} = V_{pq}(t, V_0) \,.$$

• Comparing $V_{sol}(t)$ with the expression of $V(\phi, \dot{\phi}) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution V_{sol}(t) such that

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{sol}}(t) = \left[V_{\mathrm{sol}}(t), V_{\mathrm{sol} > 0}(t) - V_{\mathrm{sol} < 0}(t) \right] \,.$$

 The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).

We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$V_{pq} = V_{pq}(t, V_0) \, .$$

► Comparing $V_{sol}(t)$ with the expression of $V(\phi, \dot{\phi}) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution V_{sol}(t) such that

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{sol}}(t) = \left[V_{\mathrm{sol}}(t), V_{\mathrm{sol} > 0}(t) - V_{\mathrm{sol} < 0}(t) \right] \,.$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$V_{pq}=V_{pq}(t,V_0)\,.$$

► Comparing $V_{sol}(t)$ with the expression of $V(\phi, \dot{\phi}) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution V_{sol}(t) such that

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{sol}}(t) = \left[V_{\mathrm{sol}}(t), V_{\mathrm{sol} > 0}(t) - V_{\mathrm{sol} < 0}(t) \right] \,.$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$V_{pq} = V_{pq}(t, V_0) \,.$$

► Comparing $V_{sol}(t)$ with the expression of $V(\phi, \dot{\phi}) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

- ► All integration algorithms developed so far focus on giving solution for the Lax operator *V*, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.

▲□▶▲□▶▲□▶▲□▶ □ のQで

▶ For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

- ► All integration algorithms developed so far focus on giving solution for the Lax operator *V*, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.

▶ For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

- ► All integration algorithms developed so far focus on giving solution for the Lax operator *V*, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.

▶ For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

- All integration algorithms developed so far focus on giving solution for the Lax operator V, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.

For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

- Proving an integration formula is one thing: establishing the complete integrability of the geodesic equations is a separate issue.
- ► Liouville Integrability: is the statement that there exist *n* functionally independent constant of motion $\mathcal{H}_i(Z)$ (hamiltonians):

$$\{\mathcal{H}_i,\mathcal{H}_j\}=0$$

The geodesic Lagrangian reads

$$\mathcal{L} = \frac{1}{2} g_{AB} Y^A Y^B = \frac{1}{2} g_{ij} \dot{\phi}^i \dot{\phi}^j, \qquad V = Y^A K_A$$

▶ Phase space variable are denoted by {*φⁱ*, *P_j*}, thereby the geodesic Eqs take the form

$$\dot{Z} + \{\mathcal{H}, Z\} = 0.$$

• Using the poisson bracket on the phase space and $Y^A = g^{AB}V_B{}^iP_i$ together with MC Eqs, we obtain

$$\{Y_A, Y_B\} = -f_{AB}{}^C Y_C$$

- Proving an integration formula is one thing: establishing the complete integrability of the geodesic equations is a separate issue.
- Liouville Integrability: is the statement that there exist *n* functionally independent constant of motion $\mathcal{H}_i(Z)$ (hamiltonians):

$$\{\mathcal{H}_i,\mathcal{H}_j\}=0$$

The geodesic Lagrangian reads

$$\mathcal{L} = \frac{1}{2} g_{AB} Y^A Y^B = \frac{1}{2} g_{ij} \dot{\phi}^i \dot{\phi}^j, \qquad V = Y^A K_A$$

▶ Phase space variable are denoted by {\$\phi^i\$, \$P_j\$}\$, thereby the geodesic Eqs take the form

$$\dot{Z} + \{\mathcal{H}, Z\} = 0.$$

► Using the poisson bracket on the phase space and $Y^A = g^{AB}V_B{}^iP_i$ together with MC Eqs, we obtain

$$\{Y_A, Y_B\} = -f_{AB}{}^C Y_C$$

- Proving an integration formula is one thing: establishing the complete integrability of the geodesic equations is a separate issue.
- ► Liouville Integrability: is the statement that there exist *n* functionally independent constant of motion $\mathcal{H}_i(Z)$ (hamiltonians):

$$\{\mathcal{H}_i,\mathcal{H}_j\}=0$$

The geodesic Lagrangian reads

$$\mathcal{L} = rac{1}{2}g_{AB}Y^AY^B = rac{1}{2}g_{ij}\dot{\phi}^i\dot{\phi}^j, \qquad V = Y^AK_A$$

▶ Phase space variable are denoted by {\$\phi^i\$, \$P_j\$}\$, thereby the geodesic Eqs take the form

$$\dot{Z} + \{\mathcal{H}, Z\} = 0.$$

► Using the poisson bracket on the phase space and $Y^A = g^{AB}V_B{}^iP_i$ together with MC Eqs, we obtain

$$\{Y_A, Y_B\} = -f_{AB}{}^C Y_C$$

- Proving an integration formula is one thing: establishing the complete integrability of the geodesic equations is a separate issue.
- ► Liouville Integrability: is the statement that there exist *n* functionally independent constant of motion $\mathcal{H}_i(Z)$ (hamiltonians):

$$\{\mathcal{H}_i,\mathcal{H}_j\}=0$$

The geodesic Lagrangian reads

$$\mathcal{L} = \frac{1}{2} g_{AB} Y^A Y^B = \frac{1}{2} g_{ij} \dot{\phi}^i \dot{\phi}^j, \qquad V = Y^A K_A$$

▶ Phase space variable are denoted by {\$\phi^i\$, \$P_j\$}\$, thereby the geodesic Eqs take the form

$$\dot{Z} + \{\mathcal{H}, Z\} = 0.$$

► Using the poisson bracket on the phase space and $Y^A = g^{AB}V_B{}^iP_i$ together with MC Eqs, we obtain

$$\{Y_A, Y_B\} = -f_{AB}{}^C Y_C$$

- Proving an integration formula is one thing: establishing the complete integrability of the geodesic equations is a separate issue.
- ► Liouville Integrability: is the statement that there exist *n* functionally independent constant of motion $\mathcal{H}_i(Z)$ (hamiltonians):

$$\{\mathcal{H}_i,\mathcal{H}_j\}=0$$

The geodesic Lagrangian reads

$$\mathcal{L} = \frac{1}{2} g_{AB} Y^A Y^B = \frac{1}{2} g_{ij} \dot{\phi}^i \dot{\phi}^j, \qquad V = Y^A K_A$$

Phase space variable are denoted by {\u03c6 \u03c6 i, P_j}, thereby the geodesic Eqs take the form

$$\dot{Z} + \{\mathcal{H}, Z\} = 0.$$

► Using the poisson bracket on the phase space and $Y^A = g^{AB}V_B{}^iP_i$ together with MC Eqs, we obtain

$$\{Y_A, Y_B\} = -f_{AB}{}^C Y_C$$

- Proving an integration formula is one thing: establishing the complete integrability of the geodesic equations is a separate issue.
- ► Liouville Integrability: is the statement that there exist *n* functionally independent constant of motion $\mathcal{H}_i(Z)$ (hamiltonians):

$$\{\mathcal{H}_i,\mathcal{H}_j\}=0$$

The geodesic Lagrangian reads

$$\mathcal{L} = \frac{1}{2} g_{AB} Y^A Y^B = \frac{1}{2} g_{ij} \dot{\phi}^i \dot{\phi}^j, \qquad V = Y^A K_A$$

▶ Phase space variable are denoted by {\$\phi^i\$, \$P_j\$}\$, thereby the geodesic Eqs take the form

$$\dot{Z} + \{\mathcal{H}, Z\} = 0.$$

• Using the poisson bracket on the phase space and $Y^A = g^{AB}V_B{}^iP_i$ together with MC Eqs, we obtain

$$\{Y_A, Y_B\} = -f_{AB}{}^C Y_C$$

Noether Charge: Consider the following matrix

$$Q = \mathbb{L}(\tau)V(\tau)\mathbb{L}(\tau)^{-1}, \qquad \frac{dQ}{d\tau} = 0$$

The *n* components of Noether charge matrix defined by

 $Q_A \sim \operatorname{Tr}(QT_A)$

• One can derive the following relations between Q_A and Y_A

$$Q_A = \mathbb{L}_A{}^B Y_B$$

 $\{\mathcal{Q}_A, Y_B\} = 0, \quad \{\mathcal{Q}_A, \mathcal{Q}_B\} = f_{AB}{}^C \mathcal{Q}_C$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Noether Charge: Consider the following matrix

$$Q = \mathbb{L}(au) V(au) \mathbb{L}(au)^{-1}, \qquad rac{dQ}{d au} = 0$$

The *n* components of Noether charge matrix defined by

 $Q_A \sim \operatorname{Tr}(QT_A)$

• One can derive the following relations between Q_A and Y_A

$$Q_A = \mathbb{L}_A{}^B Y_B$$

► This implies

 $\{\mathcal{Q}_A, Y_B\} = 0, \quad \{\mathcal{Q}_A, \mathcal{Q}_B\} = f_{AB}{}^C \mathcal{Q}_C$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Noether Charge: Consider the following matrix

$$Q = \mathbb{L}(au) V(au) \mathbb{L}(au)^{-1}, \qquad rac{dQ}{d au} = 0$$

The *n* components of Noether charge matrix defined by

 $Q_A \sim \operatorname{Tr}(QT_A)$

• One can derive the following relations between Q_A and Y_A

$$Q_A = \mathbb{L}_A{}^B Y_B$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This implies
$$\{Q_1, Y_n\} = 0$$
 $\{Q_1, Q_n\} = f_{1n}{}^C Q_n$

Noether Charge: Consider the following matrix

$$Q = \mathbb{L}(au) V(au) \mathbb{L}(au)^{-1}, \qquad rac{dQ}{d au} = 0$$

The *n* components of Noether charge matrix defined by

 $Q_A \sim \operatorname{Tr}(QT_A)$

• One can derive the following relations between Q_A and Y_A

$$Q_A = \mathbb{L}_A{}^B Y_B$$

This implies

$$\{Q_A, Y_B\} = 0, \quad \{Q_A, Q_B\} = f_{AB}{}^C Q_C$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▶ Proof: Establishing Liouville integrability of the *first order problem*

 $\dot{Y}_A + \{\mathcal{H}, Y_A\} = 0$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element (Y^A) of Solv*.
- Denote

$$\dim(coset) = n$$
, $\dim(leaf) = 2h_O$, $2h_O = \operatorname{rank}(f_{AB}{}^C Y_C)$

• We proved the existence of $(n - h_0)$ constants of motion in involution where:

 $h_O \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf $n - 2h_O \rightarrow$ are referred to as *Casimirs* defined as

 $\{\mathcal{H}(Y),Y_A\}=0.$

Proof: Establishing Liouville integrability of the first order problem

 $\dot{Y}_A + \{\mathcal{H}, Y_A\} = 0$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element (Y^A) of Solv*.

Denote

$$\dim(coset) = n$$
, $\dim(leaf) = 2h_O$, $2h_O = \operatorname{rank}(f_{AB}{}^C Y_C)$

• We proved the existence of $(n - h_0)$ constants of motion in involution where:

 $h_O \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf $n - 2h_O \rightarrow$ are referred to as *Casimirs* defined as

 $\{\mathcal{H}(Y), Y_A\} = 0.$

Proof: Establishing Liouville integrability of the *first order problem*

 $\dot{Y}_A + \{\mathcal{H}, Y_A\} = 0$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element (Y^A) of Solv*.
- Denote

$$\dim(coset) = n$$
, $\dim(leaf) = 2h_O$, $2h_O = \operatorname{rank}(f_{AB}{}^C Y_C)$

▶ We proved the existence of $(n - h_0)$ constants of motion in involution where:

 $h_O \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf $n - 2h_O \rightarrow$ are referred to as *Casimirs* defined as

 $\{\mathcal{H}(Y), Y_A\} = 0.$

Proof: Establishing Liouville integrability of the *first order problem*

 $\dot{Y}_A + \{\mathcal{H}, Y_A\} = 0$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element (Y^A) of Solv*.
 Denote

 $\dim(coset) = n$, $\dim(leaf) = 2h_O$, $2h_O = \operatorname{rank}(f_{AB}{}^C Y_C)$

• We proved the existence of $(n - h_0)$ constants of motion in involution where:

 $h_O \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf $n - 2h_O \rightarrow$ are referred to as *Casimirs* defined as

 $\{\mathcal{H}(Y), Y_A\} = 0.$

・ロト・4日・4日・4日・日・9への

Proof: Establishing Liouville integrability of the *first order problem*

 $\dot{Y}_A + \{\mathcal{H}, Y_A\} = 0$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element (Y^A) of Solv*.
- Denote

$$\dim(coset) = n$$
, $\dim(leaf) = 2h_O$, $2h_O = \operatorname{rank}(f_{AB}{}^C Y_C)$

• We proved the existence of $(n - h_0)$ constants of motion in involution where:

 $h_0 \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf

 $\{\mathcal{H}(Y), Y_A\} = 0.$

Proof: Establishing Liouville integrability of the first order problem

 $\dot{Y}_A + \{\mathcal{H}, Y_A\} = 0$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element (Y^A) of $Solv^*$.
- Denote

$$\dim(coset) = n$$
, $\dim(leaf) = 2h_O$, $2h_O = \operatorname{rank}(f_{AB}{}^C Y_C)$

• We proved the existence of $(n - h_0)$ constants of motion in involution where:

 $h_O \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf. $n - 2h_O \rightarrow$ are referred to as *Casimirs* defined as

 $\{\mathcal{H}(Y),Y_A\}=0.$

▶ Let's denote the Hamilt. and the Casimirs on the leaves by

 $\mathcal{H}_a(Y), \quad a=1,\cdots,h_O; \qquad \mathcal{H}_\ell(Y), \quad \ell=1,\cdots n-2h_O.$

• We find $2(n - h_0)$ constants of motion which Poisson commute

 $\mathcal{H}_a(Y_A), \qquad \mathcal{H}_\ell(Y_A), \qquad \mathcal{H}_a(Q_A), \qquad \mathcal{H}_\ell(Q_A),$

where

- ▶ The $\mathcal{H}_a(Q_A)$, resp. $\mathcal{H}_\ell(Q_A)$ are obtained by *replacing* Y_A by Q_A in $\mathcal{H}_a(Y_A)$, $\mathcal{H}_\ell(Y_A)$.
- ▶ The only independent quantities are $\mathcal{H}_a(Y)$, $\mathcal{H}_\ell(Y)$ and $\mathcal{H}_a(Q)$. This therefore gives a total of

$$(n-h_0)+h_0=n$$

► Let's denote the Hamilt. and the Casimirs on the leaves by

 $\mathcal{H}_a(Y), \quad a=1,\cdots,h_O; \qquad \mathcal{H}_\ell(Y), \quad \ell=1,\cdots n-2h_O.$

• We find $2(n - h_0)$ constants of motion which Poisson commute

 $\mathcal{H}_a(Y_A), \qquad \mathcal{H}_\ell(Y_A), \qquad \mathcal{H}_a(Q_A), \qquad \mathcal{H}_\ell(Q_A),$

where

- ▶ The $\mathcal{H}_a(Q_A)$, resp. $\mathcal{H}_\ell(Q_A)$ are obtained by *replacing* Y_A by Q_A in $\mathcal{H}_a(Y_A)$, $\mathcal{H}_\ell(Y_A)$.
- ▶ The only independent quantities are $\mathcal{H}_a(Y)$, $\mathcal{H}_\ell(Y)$ and $\mathcal{H}_a(Q)$. This therefore gives a total of

$$(n-h_0)+h_0=n$$

► Let's denote the Hamilt. and the Casimirs on the leaves by

 $\mathcal{H}_a(Y), \quad a=1,\cdots,h_O; \qquad \mathcal{H}_\ell(Y), \quad \ell=1,\cdots n-2h_O.$

• We find $2(n - h_0)$ constants of motion which Poisson commute

$$\mathcal{H}_a(Y_A), \qquad \mathcal{H}_\ell(Y_A), \qquad \mathcal{H}_a(Q_A), \qquad \mathcal{H}_\ell(Q_A),$$

where

- ► The $\mathcal{H}_a(Q_A)$, resp. $\mathcal{H}_\ell(Q_A)$ are obtained by *replacing* Y_A by Q_A in $\mathcal{H}_a(Y_A)$, $\mathcal{H}_\ell(Y_A)$.
- ▶ The only independent quantities are $\mathcal{H}_a(Y)$, $\mathcal{H}_\ell(Y)$ and $\mathcal{H}_a(Q)$. This therefore gives a total of

$$(n-h_0)+h_0=n$$

► Let's denote the Hamilt. and the Casimirs on the leaves by

 $\mathcal{H}_a(Y), \quad a=1,\cdots,h_O; \qquad \mathcal{H}_\ell(Y), \quad \ell=1,\cdots n-2h_O.$

• We find $2(n - h_0)$ constants of motion which Poisson commute

$$\mathcal{H}_a(Y_A), \qquad \mathcal{H}_\ell(Y_A), \qquad \mathcal{H}_a(Q_A), \qquad \mathcal{H}_\ell(Q_A),$$

where

- ► The $\mathcal{H}_a(Q_A)$, resp. $\mathcal{H}_\ell(Q_A)$ are obtained by *replacing* Y_A by Q_A in $\mathcal{H}_a(Y_A)$, $\mathcal{H}_\ell(Y_A)$.
- ▶ The only independent quantities are $\mathcal{H}_a(Y)$, $\mathcal{H}_\ell(Y)$ and $\mathcal{H}_a(Q)$. This therefore gives a total of

$$(n-h_0)+h_0=n$$

► Let's denote the Hamilt. and the Casimirs on the leaves by

 $\mathcal{H}_a(Y), \quad a=1,\cdots,h_O; \qquad \mathcal{H}_\ell(Y), \quad \ell=1,\cdots n-2h_O.$

• We find $2(n - h_0)$ constants of motion which Poisson commute

$$\mathcal{H}_a(Y_A), \qquad \mathcal{H}_\ell(Y_A), \qquad \mathcal{H}_a(Q_A), \qquad \mathcal{H}_\ell(Q_A),$$

where

- The $\mathcal{H}_a(Q_A)$, resp. $\mathcal{H}_\ell(Q_A)$ are obtained by *replacing* Y_A by Q_A in $\mathcal{H}_a(Y_A)$, $\mathcal{H}_\ell(Y_A)$.
- ► The only independent quantities are $\mathcal{H}_a(Y)$, $\mathcal{H}_\ell(Y)$ and $\mathcal{H}_a(Q)$. This therefore gives a total of

$$(n-h_O)+h_O=n$$

► Let's denote the Hamilt. and the Casimirs on the leaves by

 $\mathcal{H}_a(Y), \quad a=1,\cdots,h_O; \qquad \mathcal{H}_\ell(Y), \quad \ell=1,\cdots n-2h_O.$

• We find $2(n - h_0)$ constants of motion which Poisson commute

$$\mathcal{H}_a(Y_A), \qquad \mathcal{H}_\ell(Y_A), \qquad \mathcal{H}_a(Q_A), \qquad \mathcal{H}_\ell(Q_A),$$

where

- The $\mathcal{H}_a(Q_A)$, resp. $\mathcal{H}_\ell(Q_A)$ are obtained by *replacing* Y_A by Q_A in $\mathcal{H}_a(Y_A)$, $\mathcal{H}_\ell(Y_A)$.
- ► The only independent quantities are $\mathcal{H}_a(Y)$, $\mathcal{H}_\ell(Y)$ and $\mathcal{H}_a(Q)$. This therefore gives a total of

$$(n-h_O)+h_O=n$$

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- ► Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- ► We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- ► Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- ▶ We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- ▶ We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- ► We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- ► We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

- ► We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- ► We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- ▶ We believe that the *n* Hamilt. will provide a complete set of commuting observables for the quantum description of BH.