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Introduction : Goals

I Main goal : finding p-brane type solutions of supergravity theories in an
algorithmic manner. We consider both time-like branes, as well as
space-like branes.

I Strategy : use the fact that, in case symmetry is present, the branes are
described by geodesic motion on a certain moduli space (after performing a
certain dimensional reduction).

I In case the moduli space is a symmetric space, the geodesic equations that
describe both time-like and space-like branes can be written in a specific
form : the Lax pair form.

I This rewriting establishes integrability. The explicit integration can
moreover be done in an algorithmic manner.

I In this way, one can find (after oxidation) cosmological solutions of
SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS)
without relying on supersymmetry arguments.
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Branes as geodesics on moduli space

I p-brane solutions in d dimensions are charged electrically under Ap+1 or
magnetically under Ad−p−3.

ds2
d = e2A(r)ηµνdxµdxν + e2B(r)(dr2 + r2dΩ2

d−p−2) (time− like) ,

ds2
d = e2A(t)δµνdxµdxν + e2B(t)(−dt2 + r2dΣ2

d−p−2) (space− like)

I Transversal symmetries : SO(d − p− 1) or SO(d − p− 2, 1)

I Worldvolume symmetries contain an Rp+1 subgroup of translations −→
matter fields are translation invariant.

I For the purpose of finding solutions : effectively dimensionally reduce the
solutions over its worldvolume :

p-brane in d dim. −→−1-brane in D = d − p− 1 dim.

S =

∫
dDx

√
|g|
{

R− 1
2

Gij(φ)∂φi∂φj
}
.
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Branes as geodesics on moduli space

I E.o.m.’s for the scalars decouple from these for the metric. The e.o.m.’s for
the scalars reduce to geodesic equations in the moduli space with metric
Gij(φ).

I Main difference between time-like and space-like branes:

time-like branes space-like branes

reduction includes time reduction does not include time

ds2
D = f 2(r)dr2 + g2(r)gabdxadxb ds2

D = −f 2(t)dt2 + g2(t)gabdxadxb

pseudo-Riem. moduli space Riem. moduli space

G
H∗ with H∗ non-compact G

H with H compact

||v||2 > 0, < 0,= 0 ||v||2 > 0

relevant for black holes relevant for cosmologies
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The geodesic equations in Lax pair form

I Consider a symmetric space G/H (Riem. or pseudo-Riem.). The Cartan
decomposition reads

G = H + K ,

[H,H] ⊂ H , [H,K] ⊂ K , [K,K] ⊂ H .

I Upon choosing a coset representative L(φI(t)), one can build the
Maurer-Cartan form

Ω = L−1 d
dt
L = φ̇IL−1 ∂

∂φI L = W + V ,

with W ∈ H, V ∈ K.
I The scalar field action reads

S =

∫
dt Tr(VV) ∝

∫
dt GIJ(φ)φ̇Iφ̇J .

I Varying this action, one is led to the following equations of motion:

d
dt

V = [V,W] .
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The geodesic equations in Lax pair form

I The equation
d
dt

V = [V,W] ,

constitutes the so-called Lax equation. It reproduces the geodesic equations
as a matrix differential equation.

I Note : V(t) = V(φ(t), φ̇(t)), W(t) = W(φ(t), φ̇(t)).
I For symmetric spaces, one can work in solvable gauge :

L = exp b , b ∈ Borel algebra .

”L = exponential of upper triangular matrix”.
I In solvable gauge

W = V>0 − V<0 .

I The Lax equation, with W obeying the latter equation, can be solved
algorithmically, for generic initial condition V(t = 0) = V0.
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Initial conditions

I In order to solve the Lax equation, one needs to specify an initial condition
V0. This is taken to be an arbitrary (constant) element of K.

I In general :

H = Span {Eα + θ(Eα)} ,
K = Span {Hi, (Eα − θ(Eα)} .

with

space− like branes : θ(Eα) = −E−α = −(Eα)T ,

time− like branes : θ(Eα) = −(−1)β0(α)E−α = −(−1)β0(α)(Eα)T .

β0(α) = grading of root α with respect to a generator associated with the
internal time direction. It takes on values 0, 1, 2 on positive values.
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Initial conditions

I Strategy for parametrizing initial values : parametrize V0 as

V0 = h(exp QN)h−1 , h ∈ H ,

with QN the so-called normal form.
I Space-like branes : elements of K are either diagonal, or symmetric⇒

they can be diagonalized using H-transformations. The eigenvalues are
moreover real.

I Time-like branes : elements of K are either diagonal, symmetric or
anti-symmetric. The normal form is no longer diagonal. Generically
(Bergshoeff et al. : arXiv:0806.2310)

QN ∈
{(

sl(2,R)

so(1, 1)

)p

× so(1, 1)q
}
⊕ Nil

complex eigval. real eigval. nilpotent el.
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The simplest example : S `(2,R)

I Generators, coset representative and Lax operator

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, L = eχ(t)Ee

φ(t)
2 H .

V =

( 1
2φ
′[t] ± 1

2 e−φ[t]χ′[t]
1
2 e−φ[t]χ′[t] − 1

2φ
′[t]

)

I Space-like branes (S `(2,R)/SO(2)):

H = Span
{

(E − ET)
}
, K = Span

{
H,

1√
2

(E + ET)

}
,

V0 =

(
a b
b −a

)
, a, b ∈ R

V0 is always diagonalizable with real eigenvalues ±
√

a2 + b2.
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The simplest example : S `(2,R)

I Time-like branes (S `(2,R)/SO(1, 1)):

H = Span
{

(E + ET)
}
, K = Span

{
H,

1√
2

(E − ET)

}
,

V0 =

(
a b
−b −a

)
, a, b ∈ R

We now have to distinguish three cases:
• a2 > b2 : normal form is diagonal with 2 real eigenvalues :
λ± = ±

√
a2 − b2. Corresponds to geodesics with positive norm squared.

• a2 < b2 : 2 complex eigenvalues λ, λ̄ = ±i
√

a2 − b2. Corresponds to
geodesics with negative norm squared.

• a2 = b2 :

V0 ∝
(

1 1
−1 −1

)
This case is nilpotent of degree 2 : V2

0 = 0. Corresponds to null geodesics.
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A universal integration algorithm

I Mathematicians have developed an integration algorithm that solves the
Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).

I This algorithm is universal : works both for Riemannian and
pseudo-Riemannian cosets. The result is a solution Vsol(t) such that

d
dt

Vsol(t) = [Vsol(t),Vsol>0(t)− Vsol<0(t)] .

I The version of Kodama et al. only incorporates diagonalizable initial
conditions (real/complex eigenvalues).

I We gave however an integration formula that works for generic initial
conditions, so including the nilpotent cases (Chemissany et al. 2009).
Result:

Vpq = Vpq(t,V0) .

I Comparing Vsol(t) with the expression of V(φ, φ̇)⇒ iterative system of
first order equations (solvable gauge!). Can be solved easily, leading to
solutions for the scalar fields.
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solutions for the scalar fields.



Lax Integration algorithms

I All integration algorithms developed so far focus on giving solution for the
Lax operator V, which is somewhat sufficient to obtain the solutions for the
scalar fileds.

I However, this requires solving a second order differential equations which
can be solved explicitly.

I For practical reasons, we found it desirable to circumvent this second
integration step by proposing and proving an integration formula (
Chemissany et al. 2010).
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Liouville Integrability

I Proving an integration formula is one thing: establishing the complete
inetgrability of the geodesic equations is a separate issue.

I Liouville Integrability: is the statement that there exist n functionally
independent constant of motionHi(Z) (hamiltonians):

{Hi,Hj} = 0

I The geodesic Lagrangian reads

L =
1
2

gABYAYB =
1
2

gijφ̇
iφ̇j, V = YAKA

I Phase space variable are denoted by {φi,Pj}, thereby the geodesic Eqs take
the form

Ż + {H,Z} = 0.

I Using the poisson bracket on the phase space and YA = gABVB
iPi together

with MC Eqs, we obtain

{YA,YB} = −fAB
CYC

This is the natural Poisson brackets on solv∗ induced by the Lie algebra.
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Liouville Integrability

I Noether Charge: Consider the following matrix

Q = L(τ)V(τ)L(τ)−1,
dQ
dτ

= 0

The n components of Noether charge matrix defined by

QA ∼ Tr(QTA)

I One can derive the following relations between QA and YA

QA = LA
BYB

I This implies
{QA,YB} = 0, {QA,QB} = fAB

CQC
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Liouville Integrability

I Proof: Establishing Liouville integrability of the first order problem

ẎA + {H,YA} = 0

I Poisson bracket on the dual Lie algebra Solv∗ is degenerate, integrability
implies the existence of symplectic foliation for which the hamiltonian
flows are integrable on the symplectic leaves.

I Each leaf is nothing but the co-adjoint orbit of an element (YA) of Solv∗.
I Denote

dim(coset) = n, dim(leaf ) = 2hO, 2hO = rank(fAB
CYC)

I We proved the existence of (n− hO) constants of motion in involution
where:
hO → corresponds to Hamilt. in involution on symplectic leaf.
n− 2hO → are referred to as Casimirs defined as

{H(Y),YA} = 0.
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Liouville Integrability

I Let’s denote the Hamilt. and the Casimirs on the leaves by

Ha(Y), a = 1, · · · , hO; H`(Y), ` = 1, · · · n− 2hO.

I We find 2(n− hO) constants of motion which Poisson commute

Ha(YA), H`(YA), Ha(QA), H`(QA),

where
I TheHa(QA), resp. H`(QA) are obtained by replacing YA by QA in
Ha(YA), H`(YA).

I The only independent quantities areHa(Y), H`(Y) andHa(Q). This
therefore gives a total of

(n− hO) + hO = n

I Thereby proving Liouville integrability of the second order problem.
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Conclusion and Outlook

I We have established new insights into the solvability and integrability of
the geodesic eqs following from reducing symmetric supergravities over
the timelike direction.

I We have presented a recursive but closed formula for the coset
representative describing a generic geodesic solution.

I Our results solve an open-standing question about the existence of a fake
superpotential (Hamilton-Jacobi) for black hole solutions.

I Since Liouville Integrability implies HJ integrability we have proven the
(local) existence of a fake superpotential for all stationary and spherically
symmetric BH’s.

I We have given the physical interpretation for most of the Hamiltonians,
e.g. the polynomial constants keep track of the regularity and extremality
of the solutions etc..

I We anticipate to investigate the Hamilt. in more involved models, such as
the STU model.

I We believe that the n Hamilt. will provide a complete set of commuting
observables for the quantum description of BH.
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