Integrating geodesic flows : finding supergravity cosmologies and black holes

Wissam Chemissany
U of L, Alberta, Canada

Based on: W.C, P. Fré, Alexender Sorin, arXiv:0904.0801
W. C, M. Trigiante, T. Van Riet, Jan.R., arXiv:0903.2777
W. C, P. Fré, A. Sorin, M. Trigiante, T. Van Riet, Jan.Rosseel, arXiv:1007.3209
W.C, M. Walton, to appear

ERE2010, 06/09/2010

Outline

1. Introduction
2. Branes as geodesics on moduli space
3. The geodesic equations in Lax pair form
4. Initial conditions
5. The simplest example : $\mathrm{S} \ell(2, \mathbb{R})$
6. A universal integration algorithm
7. Liouville Integrability
8. Conclusion and Outlook

Introduction : Goals

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy: use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

Introduction : Goals

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
> This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

Introduction : Goals

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

Introduction : Goals

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

Introduction : Goals

- Main goal : finding p-brane type solutions of supergravity theories in an algorithmic manner. We consider both time-like branes, as well as space-like branes.
- Strategy : use the fact that, in case symmetry is present, the branes are described by geodesic motion on a certain moduli space (after performing a certain dimensional reduction).
- In case the moduli space is a symmetric space, the geodesic equations that describe both time-like and space-like branes can be written in a specific form : the Lax pair form.
- This rewriting establishes integrability. The explicit integration can moreover be done in an algorithmic manner.
- In this way, one can find (after oxidation) cosmological solutions of SUGRA, as well as e.g. black hole solutions (both BPS and non-BPS) without relying on supersymmetry arguments.

Branes as geodesics on moduli space

- p-brane solutions in d dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$
\begin{array}{lll}
\mathrm{d} s_{d}^{2} & =\mathrm{e}^{2 A(r)} \eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(r)}\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-p-2}^{2}\right) & (\text { time }- \text { like }), \\
\mathrm{d} s_{d}^{2}=\mathrm{e}^{2 A(t)} \delta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(t)}\left(-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \Sigma_{d-p-2}^{2}\right) & (\text { space }- \text { like })
\end{array}
$$

- Transversal symmetries : $\mathbf{S O}(d-p-1)$ or $\mathbf{S O}(d-p-2,1)$
- Worldvolume symmetries contain an \mathbb{R}^{p+1} subgroup of translations \longrightarrow matter fields are translation invariant.
- For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :
p-brane in d dim. $\longrightarrow-1$-brane in $D=d-p-1 \mathrm{dim}$.

$$
S=\int \mathrm{d}^{D} x \sqrt{|g|}\left\{R-\frac{1}{2} G_{i j}(\phi) \partial \phi^{i} \partial \phi^{j}\right\}
$$

Branes as geodesics on moduli space

- p-brane solutions in d dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$
\begin{array}{ll}
\mathrm{d} s_{d}^{2}=\mathrm{e}^{2 A(r)} \eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(r)}\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-p-2}^{2}\right) & (\text { time }- \text { like }), \\
\mathrm{d} s_{d}^{2}=\mathrm{e}^{2 A(t)} \delta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(t)}\left(-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \Sigma_{d-p-2}^{2}\right) & (\text { space }- \text { like })
\end{array}
$$

- Transversal symmetries : $\mathrm{SO}(d-p-1)$ or $\mathrm{SO}(d-p-2,1)$
matter fields are translation invariant.
For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume
p-brane in d dim. $\longrightarrow-1$-brane in $D=d-p-1 \mathrm{dim}$.

Branes as geodesics on moduli space

- p-brane solutions in d dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$
\begin{array}{lll}
\mathrm{d} s_{d}^{2}=\mathrm{e}^{2 A(r)} \eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(r)}\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-p-2}^{2}\right) & (\text { time }- \text { like }), \\
\mathrm{d} s_{d}^{2}=\mathrm{e}^{2 A(t)} \delta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(t)}\left(-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \Sigma_{d-p-2}^{2}\right) & (\text { space }- \text { like })
\end{array}
$$

- Transversal symmetries : $\mathrm{SO}(d-p-1)$ or $\mathrm{SO}(d-p-2,1)$
- Worldvolume symmetries contain an \mathbb{R}^{p+1} subgroup of translations \longrightarrow matter fields are translation invariant.
- For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :

$$
\begin{aligned}
& p \text {-brane in } d \text { dim. } \longrightarrow-1 \text {-brane in } D=d-p-1 \text { dim. } \\
& \qquad S=\int \mathrm{d}^{D} x \sqrt{|g|}\left\{R-\frac{1}{2} G_{i j}(\phi) \partial \phi^{i} \partial \phi^{j}\right\}
\end{aligned}
$$

Branes as geodesics on moduli space

- p-brane solutions in d dimensions are charged electrically under A_{p+1} or magnetically under A_{d-p-3}.

$$
\begin{aligned}
\mathrm{d} s_{d}^{2} & =\mathrm{e}^{2 A(r)} \eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(r)}\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-p-2}^{2}\right) \\
\mathrm{d} s_{d}^{2} & =\mathrm{e}^{2 A(t)} \delta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{e}^{2 B(t)}\left(-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \Sigma_{d-p-2}^{2}\right)
\end{aligned} \quad(\text { space }- \text { like }),
$$

- Transversal symmetries : $\mathrm{SO}(d-p-1)$ or $\mathrm{SO}(d-p-2,1)$
- Worldvolume symmetries contain an \mathbb{R}^{p+1} subgroup of translations \longrightarrow matter fields are translation invariant.
- For the purpose of finding solutions : effectively dimensionally reduce the solutions over its worldvolume :

$$
p \text {-brane in } d \operatorname{dim} . \longrightarrow-1 \text {-brane in } D=d-p-1 \operatorname{dim} .
$$

$$
S=\int \mathrm{d}^{D} x \sqrt{|g|}\left\{R-\frac{1}{2} G_{i j}(\phi) \partial \phi^{i} \partial \phi^{j}\right\}
$$

Branes as geodesics on moduli space

- E.o.m.'s for the scalars decouple from these for the metric. The e.o.m.'s for the scalars reduce to geodesic equations in the moduli space with metric $G_{i j}(\phi)$.
- Main difference between time-like and space-like branes:

time-like branes	space-like branes					
reduction includes time	reduction does not include time					
$\mathrm{d} s_{D}^{2}=f^{2}(r) \mathrm{d} r^{2}+g^{2}(r) g_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}$	$\mathrm{~d} s_{D}^{2}=-f^{2}(t) \mathrm{d} t^{2}+g^{2}(t) g_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}$					
pseudo-Riem. moduli space	Riem. moduli space					
$\frac{G}{H^{*}}$ with H^{*} non-compact	$\frac{G}{H}$ with H compact					
$\\|\mathrm{v}\\| \\|^{2}>0,<0,=0$	$\\|\mathrm{v}\\|^{2}>0$					
relevant for black holes	relevant for cosmologies					

Branes as geodesics on moduli space

- E.o.m.'s for the scalars decouple from these for the metric. The e.o.m.'s for the scalars reduce to geodesic equations in the moduli space with metric $G_{i j}(\phi)$.
- Main difference between time-like and space-like branes:

time-like branes	space-like branes				
reduction includes time	reduction does not include time				
$\mathrm{d} s_{D}^{2}=f^{2}(r) \mathrm{d} r^{2}+g^{2}(r) g_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}$	$\mathrm{~d} s_{D}^{2}=-f^{2}(t) \mathrm{d} t^{2}+g^{2}(t) g_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}$				
pseudo-Riem. moduli space	Riem. moduli space				
$\frac{G}{H^{*}}$ with H^{*} non-compact	$\frac{G}{H}$ with H compact				
$\\|\mathrm{v}\\|^{2}>0,<0,=0$	$\\|\mathrm{v}\\|^{2}>0$				
relevant for black holes	relevant for cosmologies				

The geodesic equations in Lax pair form

- Consider a symmetric space G / H (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$
\begin{aligned}
& \mathbb{G}=\mathbb{H}+\mathbb{K}, \\
& {[\mathbb{H}, \mathbb{H}] \subset \mathbb{H}, \quad[\mathbb{H}, \mathbb{K}] \subset \mathbb{K}, \quad[\mathbb{K}, \mathbb{K}] \subset \mathbb{H} .}
\end{aligned}
$$

- Upon choosing a coset representative $\mathbb{L}\left(\phi^{l}(t)\right)$, one can build the Maurer-Cartan form

with $W \in \mathbb{H}, V \in \mathbb{K}$.
- The scalar field action reads

$$
S=\int \mathrm{d} t \operatorname{Tr}(V V) \propto \int \mathrm{d} t G_{I J}(\phi) \dot{\phi}^{I} \dot{\phi}^{J}
$$

- Varying this action, one is led to the following equations of motion:

The geodesic equations in Lax pair form

- Consider a symmetric space G / H (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$
\begin{aligned}
& \mathbb{G}=\mathbb{H}+\mathbb{K}, \\
& {[\mathbb{H}, \mathbb{H}] \subset \mathbb{H}, \quad[\mathbb{H}, \mathbb{K}] \subset \mathbb{K}, \quad[\mathbb{K}, \mathbb{K}] \subset \mathbb{H} .}
\end{aligned}
$$

- Upon choosing a coset representative $\mathbb{L}\left(\phi^{I}(t)\right)$, one can build the Maurer-Cartan form

$$
\Omega=\mathbb{L}^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbb{L}=\dot{\phi}^{I} \mathbb{L}^{-1} \frac{\partial}{\partial \phi^{I}} \mathbb{L}=W+V
$$

with $W \in \mathbb{H}, V \in \mathbb{K}$.

- The scalar field action reads

- Varying this action, one is led to the following equations of motion:

The geodesic equations in Lax pair form

- Consider a symmetric space G / H (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$
\begin{aligned}
& \mathbb{G}=\mathbb{H}+\mathbb{K}, \\
& {[\mathbb{H}, \mathbb{H}] \subset \mathbb{H}, \quad[\mathbb{H}, \mathbb{K}] \subset \mathbb{K}, \quad[\mathbb{K}, \mathbb{K}] \subset \mathbb{H} .}
\end{aligned}
$$

- Upon choosing a coset representative $\mathbb{L}\left(\phi^{I}(t)\right)$, one can build the Maurer-Cartan form

$$
\Omega=\mathbb{L}^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbb{L}=\dot{\phi}^{I} \mathbb{L}^{-1} \frac{\partial}{\partial \phi^{I}} \mathbb{L}=W+V
$$

with $W \in \mathbb{H}, V \in \mathbb{K}$.

- The scalar field action reads

$$
S=\int \mathrm{d} t \operatorname{Tr}(V V) \propto \int \mathrm{d} t G_{I J}(\phi) \dot{\phi}^{I} \dot{\phi}^{J}
$$

- Varying this action, one is led to the following equations of motion:

The geodesic equations in Lax pair form

- Consider a symmetric space G / H (Riem. or pseudo-Riem.). The Cartan decomposition reads

$$
\begin{aligned}
& \mathbb{G}=\mathbb{H}+\mathbb{K}, \\
& {[\mathbb{H}, \mathbb{H}] \subset \mathbb{H}, \quad[\mathbb{H}, \mathbb{K}] \subset \mathbb{K}, \quad[\mathbb{K}, \mathbb{K}] \subset \mathbb{H} .}
\end{aligned}
$$

- Upon choosing a coset representative $\mathbb{L}\left(\phi^{I}(t)\right)$, one can build the Maurer-Cartan form

$$
\Omega=\mathbb{L}^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbb{L}=\dot{\phi}^{I} \mathbb{L}^{-1} \frac{\partial}{\partial \phi^{I}} \mathbb{L}=W+V
$$

with $W \in \mathbb{H}, V \in \mathbb{K}$.

- The scalar field action reads

$$
S=\int \mathrm{d} t \operatorname{Tr}(V V) \propto \int \mathrm{d} t G_{I J}(\phi) \dot{\phi}^{I} \dot{\phi}^{J}
$$

- Varying this action, one is led to the following equations of motion:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=[V, W]
$$

The geodesic equations in Lax pair form

- The equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=[V, W],
$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

- Note: $V(t)=V(\phi(t), \phi(t)), W(t)=W(\phi(t), \phi(t))$.
- For symmetric spaces, one can work in solvable gauge :

$$
\mathbb{L}=\exp b, \quad b \in \text { Borel algebra }
$$

" $\mathrm{L}=$ exponential of upper triangular matrix".

- In solvable gauge

$$
W=V_{>0}-V_{<0}
$$

- The Lax equation, with W obeying the latter equation, can be solved algorithmically, for generic initial condition $V(t=0)=V_{0}$.

The geodesic equations in Lax pair form

- The equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=[V, W],
$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

- Note : $V(t)=V(\phi(t), \dot{\phi}(t)), W(t)=W(\phi(t), \dot{\phi}(t))$.
- For symmetric spaces, one can work in solvable gauge :

$$
\mathbb{L}=\exp b, \quad b \in \text { Borel algebra } .
$$

" $\mathrm{L}=$ e exponential of upper triangular matrix".

- In solvable gauge
- The Lax equation, with W obeying the latter equation, can be solved algorithmically, for generic initial condition $V(t=0)=V_{0}$.

The geodesic equations in Lax pair form

- The equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=[V, W]
$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

- Note : $V(t)=V(\phi(t), \dot{\phi}(t)), W(t)=W(\phi(t), \dot{\phi}(t))$.
- For symmetric spaces, one can work in solvable gauge :

$$
\mathbb{L}=\exp b, \quad b \in \text { Borel algebra } .
$$

" $\mathrm{L}=$ e exponential of upper triangular matrix".

- In solvable gauge
- The Lax equation, with W obeying the latter equation, can be solved algorithmically, for generic initial condition $V(t=0)=V_{0}$.

The geodesic equations in Lax pair form

- The equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=[V, W]
$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

- Note : $V(t)=V(\phi(t), \dot{\phi}(t)), W(t)=W(\phi(t), \dot{\phi}(t))$.
- For symmetric spaces, one can work in solvable gauge :

$$
\mathbb{L}=\exp b, \quad b \in \text { Borel algebra } .
$$

" $\mathrm{L}=$ exponential of upper triangular matrix".

- In solvable gauge

$$
W=V_{>0}-V_{<0} .
$$

- The Lax equation, with W obeying the latter equation, can be solved algorithmically, for generic initial condition $V(t=0)=V_{0}$.

The geodesic equations in Lax pair form

- The equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=[V, W]
$$

constitutes the so-called Lax equation. It reproduces the geodesic equations as a matrix differential equation.

- Note : $V(t)=V(\phi(t), \dot{\phi}(t)), W(t)=W(\phi(t), \dot{\phi}(t))$.
- For symmetric spaces, one can work in solvable gauge :

$$
\mathbb{L}=\exp b, \quad b \in \text { Borel algebra }
$$

" $\mathrm{L}=$ exponential of upper triangular matrix".

- In solvable gauge

$$
W=V_{>0}-V_{<0}
$$

- The Lax equation, with W obeying the latter equation, can be solved algorithmically, for generic initial condition $V(t=0)=V_{0}$.

Initial conditions

- In order to solve the Lax equation, one needs to specify an initial condition V_{0}. This is taken to be an arbitrary (constant) element of \mathbb{K}.
- In general

with
space - like branes : $\theta\left(E^{\alpha}\right)=-E^{-\alpha}=-\left(E^{\alpha}\right)^{T}$.
time - like branes : $\theta\left(E^{\alpha}\right)=-(-1)^{\beta_{0}(\alpha)} E^{-\alpha}=-(-1)^{\beta_{0}(\alpha)}\left(E^{\alpha}\right)^{T}$.
$\beta_{0}(\alpha)=$ grading of root α with respect to a generator associated with the internal time direction. It takes on values $0,1,2$ on positive values.

Initial conditions

- In order to solve the Lax equation, one needs to specify an initial condition V_{0}. This is taken to be an arbitrary (constant) element of \mathbb{K}.
- In general :

$$
\begin{aligned}
\mathbb{H} & =\operatorname{Span}\left\{E^{\alpha}+\theta\left(E^{\alpha}\right)\right\} \\
\mathbb{K} & =\operatorname{Span}\left\{H_{i},\left(E^{\alpha}-\theta\left(E^{\alpha}\right)\right\}\right.
\end{aligned}
$$

with

$$
\begin{aligned}
\text { space }- \text { like branes }: \theta\left(E^{\alpha}\right) & =-E^{-\alpha}=-\left(E^{\alpha}\right)^{T} \\
\text { time }- \text { like branes }: \theta\left(E^{\alpha}\right) & =-(-1)^{\beta_{0}(\alpha)} E^{-\alpha}=-(-1)^{\beta_{0}(\alpha)}\left(E^{\alpha}\right)^{T}
\end{aligned}
$$

$\beta_{0}(\alpha)=$ grading of root α with respect to a generator associated with the internal time direction. It takes on values $0,1,2$ on positive values.

Initial conditions

- Strategy for parametrizing initial values : parametrize V_{0} as

$$
V_{0}=h\left(\exp Q_{N}\right) h^{-1}, \quad h \in H,
$$

with Q_{N} the so-called normal form.

- Space-like branes : elements of \mathbb{K} are either diagonal, or symmetric \Rightarrow they can be diagonalized using H-transformations. The eigenvalues are moreover real.
- Time-like branes : elements of \mathbb{K} are either diagonal, symmetric or anti-symmetric. The normal form is no longer diagonal. Generically (Bergshoeff et al. : arXiv:0806.2310)

Initial conditions

- Strategy for parametrizing initial values : parametrize V_{0} as

$$
V_{0}=h\left(\exp Q_{N}\right) h^{-1}, \quad h \in H,
$$

with Q_{N} the so-called normal form.

- Space-like branes : elements of \mathbb{K} are either diagonal, or symmetric \Rightarrow they can be diagonalized using H-transformations. The eigenvalues are moreover real.
- Time-like branes : elements of \mathbb{K} are either diagonal, symmetric or anti-symmetric. The normal form is no longer diagonal. Generically (Bergshoeff et al. : arXiv:0806.2310)

Initial conditions

- Strategy for parametrizing initial values : parametrize V_{0} as

$$
V_{0}=h\left(\exp Q_{N}\right) h^{-1}, \quad h \in H,
$$

with Q_{N} the so-called normal form.

- Space-like branes : elements of \mathbb{K} are either diagonal, or symmetric \Rightarrow they can be diagonalized using H-transformations. The eigenvalues are moreover real.
- Time-like branes : elements of \mathbb{K} are either diagonal, symmetric or anti-symmetric. The normal form is no longer diagonal. Generically (Bergshoeff et al. : arXiv:0806.2310)

$$
\begin{aligned}
Q_{N} \in \quad & \left\{\left(\frac{\mathfrak{s l}(2, \mathbb{R})}{\mathfrak{s o}(1,1)}\right)^{p} \times \mathfrak{s o}(1,1)^{q}\right\} \oplus \mathrm{Nil} \\
& \text { complex eigval. real eigval. nilpotent el. }
\end{aligned}
$$

The simplest example : $\mathrm{S} \ell(2, \mathbb{R})$

- Generators, coset representative and Lax operator

$$
\begin{aligned}
& H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad \mathbb{L}=\mathrm{e}^{\chi(t) E} \mathrm{e}^{\frac{\phi(t)}{2} H} . \\
& V=\left(\begin{array}{cc}
\frac{1}{2} \phi^{\prime}[t] & \pm \frac{1}{2} e^{-\phi[t]} \chi^{\prime}[t] \\
\frac{1}{2} e^{-\phi[t]} \chi^{\prime}[t] & -\frac{1}{2} \phi^{\prime}[t]
\end{array}\right)
\end{aligned}
$$

- Space-like branes $(\mathrm{S} \ell(2, \mathbb{R}) / \mathrm{SO}(2))$:

V_{0} is always diagonalizable with real eigenvalues $\pm \sqrt{a^{2}+b^{2}}$.

The simplest example : $\mathrm{S} \ell(2, \mathbb{R})$

- Generators, coset representative and Lax operator

$$
\begin{aligned}
& H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad \mathbb{L}=\mathrm{e}^{\chi(t) E} \mathrm{e}^{\frac{\phi(t)}{2} H} . \\
& V=\left(\begin{array}{cc}
\frac{1}{2} \phi^{\prime}[t] & \pm \frac{1}{2} e^{-\phi[t]} \chi^{\prime}[t] \\
\left.\frac{1}{2} e^{-\phi} \phi t\right]
\end{array}\right)
\end{aligned}
$$

- Space-like branes ($\mathrm{S} \ell(2, \mathbb{R}) / \mathrm{SO}(2))$:

$$
\begin{aligned}
\mathbb{H} & =\operatorname{Span}\left\{\left(E-E^{T}\right)\right\}, \quad \mathbb{K}=\operatorname{Span}\left\{H, \frac{1}{\sqrt{2}}\left(E+E^{T}\right)\right\}, \\
V_{0} & =\left(\begin{array}{cc}
a & b \\
b & -a
\end{array}\right), \quad a, b \in \mathbb{R}
\end{aligned}
$$

V_{0} is always diagonalizable with real eigenvalues $\pm \sqrt{a^{2}+b^{2}}$.

The simplest example : $\mathrm{S} \ell(2, \mathbb{R})$

- Time-like branes $(\mathrm{S} \ell(2, \mathbb{R}) / \mathrm{SO}(1,1))$:

$$
\begin{aligned}
\mathbb{H} & =\operatorname{Span}\left\{\left(E+E^{T}\right)\right\}, \quad \mathbb{K}=\operatorname{Span}\left\{H, \frac{1}{\sqrt{2}}\left(E-E^{T}\right)\right\}, \\
V_{0} & =\left(\begin{array}{cc}
a & b \\
-b & -a
\end{array}\right), \quad a, b \in \mathbb{R}
\end{aligned}
$$

We now have to distinguish three cases:

- $a^{2}>b^{2}$: normal form is diagonal with 2 real eigenvalues : $\lambda_{ \pm}= \pm \sqrt{a^{2}-b^{2}}$. Corresponds to geodesics with positive norm squared.

This case is nilpotent of degree $2: V_{0}^{2}=0$. Corresponds to null geodesics.

The simplest example : $\mathrm{S} \ell(2, \mathbb{R})$

- Time-like branes $(\mathrm{S} \ell(2, \mathbb{R}) / \mathrm{SO}(1,1))$:

$$
\begin{aligned}
\mathbb{H} & =\operatorname{Span}\left\{\left(E+E^{T}\right)\right\}, \quad \mathbb{K}=\operatorname{Span}\left\{H, \frac{1}{\sqrt{2}}\left(E-E^{T}\right)\right\}, \\
V_{0} & =\left(\begin{array}{cc}
a & b \\
-b & -a
\end{array}\right), \quad a, b \in \mathbb{R}
\end{aligned}
$$

We now have to distinguish three cases:

- $a^{2}>b^{2}$: normal form is diagonal with 2 real eigenvalues: $\lambda_{ \pm}= \pm \sqrt{a^{2}-b^{2}}$. Corresponds to geodesics with positive norm squared.
- $a^{2}<b^{2}: 2$ complex eigenvalues $\lambda, \bar{\lambda}= \pm \mathrm{i} \sqrt{a^{2}-b^{2}}$. Corresponds to geodesics with negative norm squared.

This case is nilpotent of degree $2: V_{0}^{2}=0$. Corresponds to null geodesics.

The simplest example : $\mathrm{S} \ell(2, \mathbb{R})$

- Time-like branes $(\mathrm{S} \ell(2, \mathbb{R}) / \mathrm{SO}(1,1))$:

$$
\begin{aligned}
\mathbb{H} & =\operatorname{Span}\left\{\left(E+E^{T}\right)\right\}, \quad \mathbb{K}=\operatorname{Span}\left\{H, \frac{1}{\sqrt{2}}\left(E-E^{T}\right)\right\}, \\
V_{0} & =\left(\begin{array}{cc}
a & b \\
-b & -a
\end{array}\right), \quad a, b \in \mathbb{R}
\end{aligned}
$$

We now have to distinguish three cases:

- $a^{2}>b^{2}$: normal form is diagonal with 2 real eigenvalues: $\lambda_{ \pm}= \pm \sqrt{a^{2}-b^{2}}$. Corresponds to geodesics with positive norm squared.
- $a^{2}<b^{2}: 2$ complex eigenvalues $\lambda, \bar{\lambda}= \pm \mathrm{i} \sqrt{a^{2}-b^{2}}$. Corresponds to geodesics with negative norm squared.
- $a^{2}=b^{2}$:

$$
V_{0} \propto\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)
$$

This case is nilpotent of degree 2 : $V_{0}^{2}=0$. Corresponds to null geodesics.

A universal integration algorithm

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution $V_{\text {sol }}(t)$ such that

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$
V_{p q}=V_{p q}\left(t, \bar{V}_{0}\right)
$$

- Comparing $V_{\text {sol }}(t)$ with the expression of $V(\phi, \phi) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

A universal integration algorithm

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution $V_{\text {sol }}(t)$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V_{\mathrm{sol}}(t)=\left[V_{\mathrm{sol}}(t), V_{\mathrm{sol}>0}(t)-V_{\mathrm{sol}<0}(t)\right]
$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:
- Comparing $V_{\text {sol }}(t)$ with the expression of $V(\phi, \phi) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fietds.

A universal integration algorithm

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution $V_{\text {sol }}(t)$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V_{\mathrm{sol}}(t)=\left[V_{\mathrm{sol}}(t), V_{\mathrm{sol}>0}(t)-V_{\mathrm{sol}<0}(t)\right]
$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:
- Comparing $V_{\text {sol }}(t)$ with the expression of $V(\phi, \phi) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

A universal integration algorithm

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution $V_{\text {sol }}(t)$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V_{\mathrm{sol}}(t)=\left[V_{\mathrm{sol}}(t), V_{\mathrm{sol}>0}(t)-V_{\mathrm{sol}<0}(t)\right]
$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$
V_{p q}=V_{p q}\left(t, V_{0}\right)
$$

\Rightarrow Comparing $V_{\text {sol }}(t)$ with the expression of $V(\phi, \phi) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

A universal integration algorithm

- Mathematicians have developed an integration algorithm that solves the Lax equation (Kodama et al. : solv-int/9505004, solv-int/9506005).
- This algorithm is universal : works both for Riemannian and pseudo-Riemannian cosets. The result is a solution $V_{\text {sol }}(t)$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V_{\mathrm{sol}}(t)=\left[V_{\mathrm{sol}}(t), V_{\mathrm{sol}>0}(t)-V_{\mathrm{sol}<0}(t)\right]
$$

- The version of Kodama et al. only incorporates diagonalizable initial conditions (real/complex eigenvalues).
- We gave however an integration formula that works for generic initial conditions, so including the nilpotent cases (Chemissany et al. 2009). Result:

$$
V_{p q}=V_{p q}\left(t, V_{0}\right)
$$

- Comparing $V_{\text {sol }}(t)$ with the expression of $V(\phi, \dot{\phi}) \Rightarrow$ iterative system of first order equations (solvable gauge!). Can be solved easily, leading to solutions for the scalar fields.

Lax Integration algorithms

- All integration algorithms developed so far focus on giving solution for the Lax operator V, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.
- For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

Lax Integration algorithms

- All integration algorithms developed so far focus on giving solution for the Lax operator V, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.
- For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

Lax Integration algorithms

- All integration algorithms developed so far focus on giving solution for the Lax operator V, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.
- For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

Lax Integration algorithms

- All integration algorithms developed so far focus on giving solution for the Lax operator V, which is somewhat sufficient to obtain the solutions for the scalar fileds.
- However, this requires solving a second order differential equations which can be solved explicitly.
- For practical reasons, we found it desirable to circumvent this second integration step by proposing and proving an integration formula (Chemissany et al. 2010).

Liouville Integrability

- Proving an integration formula is one thing: establishing the complete inetgrability of the geodesic equations is a separate issue.
- Liouville Integrability: is the statement that there exist n functionally independent constant of motion $\mathcal{H}_{i}(Z)$ (hamiltonians):

$$
\left\{\mathcal{H}_{i}, \mathcal{H}_{j}\right\}=0
$$

- The geodesic Lagrangian reads

$$
\mathcal{L}=\frac{1}{2} g_{A B} Y^{A} Y^{B}=\frac{1}{2} g_{i j} \phi^{i} \phi^{j}, \quad V=Y^{A} K_{A}
$$

- Phase space variable are denoted by $\left\{\phi^{i}, P_{j}\right\}$, thereby the geodesic Eqs take the form

$$
\dot{Z}+\{\mathcal{H}, Z\}=0
$$

- Using the poisson bracket on the phase space and $Y^{A}=g^{A B} V_{B}{ }^{i} P_{i}$ together with MC Eqs, we obtain

$$
\left\{Y_{A}, Y_{B}\right\}=-f_{A B}^{C} Y_{C}
$$

This is the natural Poisson brackets on solv* induced by the Lie algebra.

Liouville Integrability

- Proving an integration formula is one thing: establishing the complete inetgrability of the geodesic equations is a separate issue.
- The geodesic Lagrangian reads

- Phase space variable are denoted by $\left\{\phi^{i}, P_{j}\right\}$, thereby the geodesic Eqs take the form

$$
\dot{Z}+\{\mathcal{H}, Z\}=0 .
$$

- Using the poisson bracket on the phase space and $Y^{A}=g^{A B} V_{B}{ }^{i} P_{i}$ together with MC Eqs, we obtain

$$
\left\{Y_{A}, Y_{B}\right\}=-f_{A B}^{C} Y_{C}
$$

\square

Liouville Integrability

- Proving an integration formula is one thing: establishing the complete inetgrability of the geodesic equations is a separate issue.
- Liouville Integrability: is the statement that there exist n functionally independent constant of motion $\mathcal{H}_{i}(Z)$ (hamiltonians):

$$
\left\{\mathcal{H}_{i}, \mathcal{H}_{j}\right\}=0
$$

- The geodesic Lagrangian reads

- Phase space variable are denoted by $\left\{\phi^{i}, P_{j}\right\}$, thereby the geodesic Eqs take the form

$$
\dot{Z}+\{\mathcal{H}, Z\}=0
$$

- Using the poisson bracket on the phase space and $Y^{A}=g^{A B} V_{B}{ }^{i} P_{i}$ together with MC Eqs, we obtain

Liouville Integrability

- Proving an integration formula is one thing: establishing the complete inetgrability of the geodesic equations is a separate issue.
- Liouville Integrability: is the statement that there exist n functionally independent constant of motion $\mathcal{H}_{i}(Z)$ (hamiltonians):

$$
\left\{\mathcal{H}_{i}, \mathcal{H}_{j}\right\}=0
$$

- The geodesic Lagrangian reads

$$
\mathcal{L}=\frac{1}{2} g_{A B} Y^{A} Y^{B}=\frac{1}{2} g_{i j} \dot{\phi}^{i} \dot{\phi}^{j}, \quad V=Y^{A} K_{A}
$$

- Phase space variable are denoted by $\left\{\phi^{i}, P_{j}\right\}$, thereby the geodesic Eqs take the form

$$
\dot{Z}+\{\mathcal{H}, Z\}=0
$$

- Using the poisson bracket on the phase space and $Y^{A}=g^{A B} V_{B}{ }^{i} P_{i}$ together with MC Eqs, we obtain

Liouville Integrability

- Proving an integration formula is one thing: establishing the complete inetgrability of the geodesic equations is a separate issue.
- Liouville Integrability: is the statement that there exist n functionally independent constant of motion $\mathcal{H}_{i}(Z)$ (hamiltonians):

$$
\left\{\mathcal{H}_{i}, \mathcal{H}_{j}\right\}=0
$$

- The geodesic Lagrangian reads

$$
\mathcal{L}=\frac{1}{2} g_{A B} Y^{A} Y^{B}=\frac{1}{2} g_{i j} \dot{\phi}^{i} \dot{\phi}^{j}, \quad V=Y^{A} K_{A}
$$

- Phase space variable are denoted by $\left\{\phi^{i}, P_{j}\right\}$, thereby the geodesic Eqs take the form

$$
\dot{Z}+\{\mathcal{H}, Z\}=0 .
$$

- Using the poisson bracket on the phase space and $Y^{A}=g^{A B} V_{B}{ }^{i} P_{i}$ together with MC Eqs, we obtain

Liouville Integrability

- Proving an integration formula is one thing: establishing the complete inetgrability of the geodesic equations is a separate issue.
- Liouville Integrability: is the statement that there exist n functionally independent constant of motion $\mathcal{H}_{i}(Z)$ (hamiltonians):

$$
\left\{\mathcal{H}_{i}, \mathcal{H}_{j}\right\}=0
$$

- The geodesic Lagrangian reads

$$
\mathcal{L}=\frac{1}{2} g_{A B} Y^{A} Y^{B}=\frac{1}{2} g_{i j} \dot{\phi}^{i} \dot{\phi}^{j}, \quad V=Y^{A} K_{A}
$$

- Phase space variable are denoted by $\left\{\phi^{i}, P_{j}\right\}$, thereby the geodesic Eqs take the form

$$
\dot{Z}+\{\mathcal{H}, Z\}=0 .
$$

- Using the poisson bracket on the phase space and $Y^{A}=g^{A B} V_{B}{ }^{i} P_{i}$ together with MC Eqs, we obtain

$$
\left\{Y_{A}, Y_{B}\right\}=-f_{A B}^{C} Y_{C}
$$

This is the natural Poisson brackets on solv* induced by the Lie algebra.

Liouville Integrability

- Noether Charge: Consider the following matrix

$$
Q=\mathbb{L}(\tau) V(\tau) \mathbb{L}(\tau)^{-1}, \quad \frac{d Q}{d \tau}=0
$$

The n components of Noether charge matrix defined by

$$
Q_{A} \sim \operatorname{Tr}\left(Q T_{A}\right)
$$

- One can derive the following relations between Q_{A} and Y_{A}

$$
Q_{A}=\mathbb{L}_{A}^{B} Y_{B}
$$

- This implies

$$
\left\{Q_{A}, Y_{B}\right\}=0, \quad\left\{Q_{A}, Q_{B}\right\}=f_{A B}^{C} Q_{C}
$$

Liouville Integrability

- Noether Charge: Consider the following matrix

$$
Q=\mathbb{L}(\tau) V(\tau) \mathbb{L}(\tau)^{-1}, \quad \frac{d Q}{d \tau}=0
$$

The n components of Noether charge matrix defined by

$$
Q_{A} \sim \operatorname{Tr}\left(Q T_{A}\right)
$$

- One can derive the following relations between Q_{A} and Y_{A}

$$
Q_{A}=\mathbb{L}_{A}^{B} Y_{B}
$$

- This implies

Liouville Integrability

- Noether Charge: Consider the following matrix

$$
Q=\mathbb{L}(\tau) V(\tau) \mathbb{L}(\tau)^{-1}, \quad \frac{d Q}{d \tau}=0
$$

The n components of Noether charge matrix defined by

$$
Q_{A} \sim \operatorname{Tr}\left(Q T_{A}\right)
$$

- One can derive the following relations between Q_{A} and Y_{A}

$$
Q_{A}=\mathbb{L}_{A}{ }^{B} Y_{B}
$$

- This implies

Liouville Integrability

- Noether Charge: Consider the following matrix

$$
Q=\mathbb{L}(\tau) V(\tau) \mathbb{L}(\tau)^{-1}, \quad \frac{d Q}{d \tau}=0
$$

The n components of Noether charge matrix defined by

$$
Q_{A} \sim \operatorname{Tr}\left(Q T_{A}\right)
$$

- One can derive the following relations between Q_{A} and Y_{A}

$$
Q_{A}=\mathbb{L}_{A}{ }^{B} Y_{B}
$$

- This implies

$$
\left\{Q_{A}, Y_{B}\right\}=0, \quad\left\{Q_{A}, Q_{B}\right\}=f_{A B}^{C} Q_{C}
$$

Liouville Integrability

- Proof: Establishing Liouville integrability of the first order problem

$$
\dot{Y}_{A}+\left\{\eta L, Y_{A}\right\}=0
$$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element $\left(Y^{A}\right)$ of $\operatorname{Solv}{ }^{*}$
- Denote

$$
\operatorname{dim}(\text { coset })=n, \quad \operatorname{dim}(\text { leaf })=2 h_{O}, \quad 2 h_{O}=\operatorname{rank}\left(f_{A B}^{C} Y_{C}\right)
$$

- We proved the existence of $\left(n-h_{O}\right)$ constants of motion in involution where:
$h_{O} \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf. $n-2 h_{O} \rightarrow$ are referred to as Casimirs defined as

$$
\left\{\mathcal{H}(Y), Y_{A}\right\}=0
$$

Liouville Integrability

- Proof: Establishing Liouville integrability of the first order problem

$$
\dot{Y}_{A}+\left\{\mathcal{H}, Y_{A}\right\}=0
$$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element $\left(Y^{A}\right)$ of Solv*
- Denote

$$
\operatorname{dim}(\text { coset })=n, \quad \operatorname{dim}(\text { leaf })=2 h_{O}, \quad 2 h_{O}=\operatorname{rank}\left(f_{A B}{ }^{C} Y_{C}\right)
$$

- We proved the existence of $\left(n-h_{O}\right)$ constants of motion in involution where:
$h_{O} \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf. $n-2 h_{O} \rightarrow$ are referred to as Casimirs defined as

$$
\left\{\mathcal{H}^{\prime}(Y), Y_{A}\right\}=0
$$

Liouville Integrability

- Proof: Establishing Liouville integrability of the first order problem

$$
\dot{Y}_{A}+\left\{\mathcal{H}, Y_{A}\right\}=0
$$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Denote
$\operatorname{dim}($ coset $)=n, \quad \operatorname{dim}($ leaf $)=2 h_{O}, \quad 2 h_{O}=\operatorname{rank}\left(f_{A B}{ }^{C} Y_{C}\right)$
- We proved the existence of $\left(n-h_{O}\right)$ constants of motion in involution where:
$h_{O} \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf. $n-2 h_{O} \rightarrow$ are referred to as Casimirs defined as

Liouville Integrability

- Proof: Establishing Liouville integrability of the first order problem

$$
\dot{Y}_{A}+\left\{\mathcal{H}, Y_{A}\right\}=0
$$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element $\left(Y^{A}\right)$ of $\operatorname{Solv} v^{*}$.
- Denote
$\operatorname{dim}($ coset $)=n, \quad \operatorname{dim}($ leaf $)=2 h_{O}, \quad 2 h_{O}=\operatorname{rank}\left(f_{A B}{ }^{C} Y_{C}\right)$
- We proved the existence of $\left(n-h_{O}\right)$ constants of motion in involution where:
$h_{O} \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf. $n-2 h_{O} \rightarrow$ are referred to as Casimirs defined as

Liouville Integrability

- Proof: Establishing Liouville integrability of the first order problem

$$
\dot{Y}_{A}+\left\{\mathcal{H}, Y_{A}\right\}=0
$$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element $\left(Y^{A}\right)$ of $\operatorname{Solv} v^{*}$.
- Denote

$$
\operatorname{dim}(\text { coset })=n, \quad \operatorname{dim}(\text { leaf })=2 h_{O}, \quad 2 h_{O}=\operatorname{rank}\left(f_{A B}^{C} Y_{C}\right)
$$

- We proved the existence of $\left(n-h_{O}\right)$ constants of motion in involution where:
$h_{O} \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf. $n-2 h_{O} \rightarrow$ are referred to as Casimirs defined as

Liouville Integrability

- Proof: Establishing Liouville integrability of the first order problem

$$
\dot{Y}_{A}+\left\{\mathcal{H}, Y_{A}\right\}=0
$$

- Poisson bracket on the dual Lie algebra Solv* is degenerate, integrability implies the existence of symplectic foliation for which the hamiltonian flows are integrable on the symplectic leaves.
- Each leaf is nothing but the co-adjoint orbit of an element $\left(Y^{A}\right)$ of Solv^{*}.
- Denote

$$
\operatorname{dim}(\text { coset })=n, \quad \operatorname{dim}(\text { leaf })=2 h_{O}, \quad 2 h_{O}=\operatorname{rank}\left(f_{A B}^{C} Y_{C}\right)
$$

- We proved the existence of $\left(n-h_{O}\right)$ constants of motion in involution where:
$h_{O} \rightarrow$ corresponds to Hamilt. in involution on symplectic leaf.
$n-2 h_{O} \rightarrow$ are referred to as Casimirs defined as

$$
\left\{\mathcal{H}(Y), Y_{A}\right\}=0
$$

Liouville Integrability

- Let's denote the Hamilt. and the Casimirs on the leaves by

$$
\mathcal{H}_{a}(Y), \quad a=1, \cdots, h_{0} ; \quad \mathcal{H}_{\ell}(Y), \quad l=1, \cdots n-2 h_{0}
$$

- We find $2\left(n-h_{O}\right)$ constants of motion which Poisson commute

$$
\mathcal{H}_{a}\left(Y_{A}\right), \quad \mathcal{H}_{e}\left(Y_{A}\right), \quad \mathcal{H}_{a}\left(Q_{A}\right), \quad \mathcal{H}_{e}\left(Q_{A}\right),
$$

where

- The $\mathcal{H}_{a}\left(Q_{A}\right)$, resp. $\mathcal{H}_{e}\left(Q_{A}\right)$ are obtained by replacing Y_{A} by Q_{A} in $\mathcal{H}_{a}\left(Y_{A}\right), \mathcal{H}_{\ell}\left(Y_{A}\right)$.
- The only independent quantities are $\mathcal{H}_{a}(Y), \mathcal{H}_{\ell}(Y)$ and $\mathcal{H}_{a}(Q)$. This therefore gives a total of

$$
\left(n-h_{O}\right)+h_{O}=n
$$

- Thereby proving Liouville integrability of the second order problem.

Liouville Integrability

- Let's denote the Hamilt. and the Casimirs on the leaves by

$$
\mathcal{H}_{a}(Y), \quad a=1, \cdots, h_{O} ; \quad \mathcal{H}_{\ell}(Y), \quad \ell=1, \cdots n-2 h_{O} .
$$

- We find $2\left(n-h_{O}\right)$ constants of motion which Poisson commute

$$
\mathcal{H}_{a}\left(Y_{A}\right), \quad \mathcal{H}_{0}\left(Y_{A}\right), \quad \mathcal{H}_{a}\left(Q_{A}\right), \quad \mathcal{H}_{1}\left(Q_{A}\right),
$$

where

- The $\mathcal{H}_{a}\left(Q_{A}\right)$, resp. $\mathcal{H}_{e}\left(Q_{A}\right)$ are obtained by replacing Y_{A} by Q_{A} in $\mathcal{H}_{a}\left(Y_{A}\right), \mathcal{H}_{\ell}\left(Y_{A}\right)$.
- The only independent quantities are $\mathcal{H}_{a}(Y), \mathcal{H}_{\ell}(Y)$ and $\mathcal{H}_{a}(Q)$. This therefore gives a total of

$$
\left(n-h_{O}\right)+h_{O}=n
$$

Liouville Integrability

- Let's denote the Hamilt. and the Casimirs on the leaves by

$$
\mathcal{H}_{a}(Y), \quad a=1, \cdots, h_{O} ; \quad \mathcal{H}_{\ell}(Y), \quad \ell=1, \cdots n-2 h_{O}
$$

- We find $2\left(n-h_{O}\right)$ constants of motion which Poisson commute

$$
\mathcal{H}_{a}\left(Y_{A}\right), \quad \mathcal{H}_{\ell}\left(Y_{A}\right), \quad \mathcal{H}_{a}\left(Q_{A}\right), \quad \mathcal{H}_{\ell}\left(Q_{A}\right),
$$

where

- The $\mathcal{H}_{a}\left(Q_{A}\right)$, resp. $\mathcal{H}_{\ell}\left(Q_{A}\right)$ are obtained by replacing Y_{A} by Q_{A} in $\mathcal{H}_{a}\left(Y_{A}\right), \mathcal{H}_{\ell}\left(Y_{A}\right)$.
- The only independent quantities are $\mathcal{H}_{a}(Y), \mathcal{H}_{e}(Y)$ and $\mathcal{H}_{a}(Q)$. This therefore gives a total of

$$
\left(n-h_{O}\right)+h_{O}=n
$$

Liouville Integrability

- Let's denote the Hamilt. and the Casimirs on the leaves by

$$
\mathcal{H}_{a}(Y), \quad a=1, \cdots, h_{O} ; \quad \mathcal{H}_{\ell}(Y), \quad \ell=1, \cdots n-2 h_{O}
$$

- We find $2\left(n-h_{O}\right)$ constants of motion which Poisson commute

$$
\mathcal{H}_{a}\left(Y_{A}\right), \quad \mathcal{H}_{\ell}\left(Y_{A}\right), \quad \mathcal{H}_{a}\left(Q_{A}\right), \quad \mathcal{H}_{\ell}\left(Q_{A}\right),
$$

where

- The $\mathcal{H}_{a}\left(Q_{A}\right)$, resp. $\mathcal{H}_{\ell}\left(Q_{A}\right)$ are obtained by replacing Y_{A} by Q_{A} in $\mathcal{H}_{a}\left(Y_{A}\right), \mathcal{H}_{\ell}\left(Y_{A}\right)$.
- The only independent quantities are $\mathcal{H}_{a}(Y), \mathcal{H}_{\ell}(Y)$ and $\mathcal{H}_{a}(Q)$. This therefore gives a total of

$$
\left(n-h_{O}\right)+h_{O}=n
$$

Liouville Integrability

- Let's denote the Hamilt. and the Casimirs on the leaves by

$$
\mathcal{H}_{a}(Y), \quad a=1, \cdots, h_{O} ; \quad \mathcal{H}_{\ell}(Y), \quad \ell=1, \cdots n-2 h_{O}
$$

- We find $2\left(n-h_{O}\right)$ constants of motion which Poisson commute

$$
\mathcal{H}_{a}\left(Y_{A}\right), \quad \mathcal{H}_{\ell}\left(Y_{A}\right), \quad \mathcal{H}_{a}\left(Q_{A}\right), \quad \mathcal{H}_{\ell}\left(Q_{A}\right),
$$

where

- The $\mathcal{H}_{a}\left(Q_{A}\right)$, resp. $\mathcal{H}_{\ell}\left(Q_{A}\right)$ are obtained by replacing Y_{A} by Q_{A} in $\mathcal{H}_{a}\left(Y_{A}\right), \mathcal{H}_{\ell}\left(Y_{A}\right)$.
- The only independent quantities are $\mathcal{H}_{a}(Y), \mathcal{H}_{\ell}(Y)$ and $\mathcal{H}_{a}(Q)$. This therefore gives a total of

$$
\left(n-h_{O}\right)+h_{O}=n
$$

Liouville Integrability

- Let's denote the Hamilt. and the Casimirs on the leaves by

$$
\mathcal{H}_{a}(Y), \quad a=1, \cdots, h_{O} ; \quad \mathcal{H}_{\ell}(Y), \quad \ell=1, \cdots n-2 h_{O}
$$

- We find $2\left(n-h_{O}\right)$ constants of motion which Poisson commute

$$
\mathcal{H}_{a}\left(Y_{A}\right), \quad \mathcal{H}_{\ell}\left(Y_{A}\right), \quad \mathcal{H}_{a}\left(Q_{A}\right), \quad \mathcal{H}_{\ell}\left(Q_{A}\right),
$$

where

- The $\mathcal{H}_{a}\left(Q_{A}\right)$, resp. $\mathcal{H}_{\ell}\left(Q_{A}\right)$ are obtained by replacing Y_{A} by Q_{A} in $\mathcal{H}_{a}\left(Y_{A}\right), \mathcal{H}_{\ell}\left(Y_{A}\right)$.
- The only independent quantities are $\mathcal{H}_{a}(Y), \mathcal{H}_{\ell}(Y)$ and $\mathcal{H}_{a}(Q)$. This therefore gives a total of

$$
\left(n-h_{O}\right)+h_{O}=n
$$

- Thereby proving Liouville integrability of the second order problem.

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since I iouville Integrability implies HI intearability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
\rightarrow We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
\rightarrow We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH .

Conclusion and Outlook

- We have established new insights into the solvability and integrability of the geodesic eqs following from reducing symmetric supergravities over the timelike direction.
- We have presented a recursive but closed formula for the coset representative describing a generic geodesic solution.
- Our results solve an open-standing question about the existence of a fake superpotential (Hamilton-Jacobi) for black hole solutions.
- Since Liouville Integrability implies HJ integrability we have proven the (local) existence of a fake superpotential for all stationary and spherically symmetric BH's.
- We have given the physical interpretation for most of the Hamiltonians, e.g. the polynomial constants keep track of the regularity and extremality of the solutions etc..
- We anticipate to investigate the Hamilt. in more involved models, such as the STU model.
- We believe that the n Hamilt. will provide a complete set of commuting observables for the quantum description of BH.

