Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

Obergaulinger et al. A&A, 498, 241 (2009)

Pablo Cerdá-Durán

Max Planck Institute for Astrophysics (Garching bei München, Germany)

In collaboration with:

M. Obergaulinger & E. Müller (MPA) M.A. Aloy (Universidad de Valencia)

Magnetic field amplification in supernovae

- Motivation (Core collapse supernovae):
 - Magnetars : 10¹⁴-10¹⁵ G
 - Long GRBs
 - Collapsar model (Whoosley et al 1993)
 - SNIc-BL Long GRB association
- Magnetic field amplification
 - Compression (not effective)
 - Differential rotation
 - Wind-up (linear)
 - Magneto-rotational instabilities (MRI)
 - Dynamos

Magnetorotational instability (MRI)

MRI theory in detail

 $C = (\mathcal{G}_z \mathcal{B}_z \tan^2 \theta_k - 2\mathcal{B}_{\varpi} \mathcal{G}_z \tan \theta_k + \mathcal{G}_{\varpi} \mathcal{B}_{\varpi} + \mathcal{R}_{\varpi})/\Omega^2$

At the equator:

$$\mathcal{C}_{90} = (N^2 + \mathcal{R}_{\varpi})/\Omega^2$$

 $N^2 \equiv \mathscr{B} \cdot \mathscr{G}$ Brunt-Väisälä frequency

MRI theory in detail

• Equatorial plane : $C_{90} = (N^2 + \mathcal{R}_{\varpi})/\Omega^2$

MRI theory in detail

• Equatorial plane : $C_{90} = (N^2 + \mathcal{R}_{\varpi})/\Omega^2$

GR simulations - CoCoNuT

• Magnetorotational core collapse: 20 M_{\odot} star with B~10¹⁰ G and 10¹² G.

- Ideal MHD code in dynamical space-time (CFC) (Dimmelmeier et al 2001, Cerdá-Durán et al. 2008)
- Spherical polar coordinates in axisymmetry (2D)
- Microphysical EOS (SHEN) and deleptonization scheme (Liebendörfer 2005)
- Time-scale: ~ 10 ms (PNS), Length-scale: ~ 1-5 km (PNS) for 10^{12} G ~ 10-50 m (PNS) for 10^{10} G

GR simulations - CoCoNuT

(also Müller & Hillebrant 1979 and Obergaulinger et al 2006)

Shearing-box simulations

- Box size: 0.5 4 km at ~ 15 km (resolution: 2.5 20 m)
- Initial field: $10^{10} 10^{11}$ G, Ideal gas
- Ideal MHD (Newtonian)
- Numerical code **AENUS** (Obergaulinger et al. *in prep.*)
 - Approximate Riemann solvers + CT scheme
 - High order schemes: MP5/7/9 and WENO4

Shearing-box simulations

Typical simulation

Shearing-box simulations

equations (Goodman & Xu 1994)

Reappearance of coherent flow patterns

Conclusions

- Global CC simulations
 - MRI resolved only for unrealistic magnetic field
 - Strong spin down: slow rotating magnetized PNS
- Semi-local simulations
 - Exponential growth well resolved and understood
 - Termination: depends on numerical resistivity
 - Saturation: important differences between 2D and 3D
 - Resistive MHD simulations needed