Density growth in Kantowski-Sachs cosmologies with cosmological constant

Michael Bradley, Peter Dunsby and Mats Forsberg

Umeå University and University of Cape Town

ERE2010, 9 September 2010, Granada

イロト イポト イヨト イヨト

1 1+3 and 1+1+2 covariant formalisms

- 1+3 covariant formalism
- Propagation equations and constraints
- 1+1+2 covariant split

2 Kantowski-Sachs

3 Density perturbations

- Inhomogeneity variables
- First order equations
- Harmonic decomposition
- Numerical solutions

Summary and outlook

(4) (5) (4) (5) (4)

1+3 covariant formalism Propagation equations and constraints 1+1+2 covariant split

イロト イポト イラト イラト

1+3 covariant formalism

1+3 covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^a. Projection operator onto perpendicular 3-space with h_{ab} = g_{ab} + u_au_b.
- Covariant time derivative: $\dot{\psi}_{a..b} \equiv u^c \nabla_c \psi_{a...b}$
- Projected derivative: $\tilde{\nabla}_c \psi_{a...b} \equiv h_c^f h_a^d ... h_b^e \nabla_f \psi_{d...e}$

1+3 covariant formalism Propagation equations and constraints 1+1+2 covariant split

イロト イポト イラト イラト

1+3 covariant formalism

1+3 covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^a. Projection operator onto perpendicular 3-space with h_{ab} = g_{ab} + u_au_b.
- Covariant time derivative: $\dot{\psi}_{a..b} \equiv u^c \nabla_c \psi_{a...b}$

• Projected derivative: $\tilde{\nabla}_c \psi_{a...b} \equiv h_c^f h_a^d ... h_b^e \nabla_f \psi_{d...e}$

1+3 covariant formalism Propagation equations and constraints 1+1+2 covariant split

イロト イヨト イヨト イヨト

1+3 covariant formalism

1+3 covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^a. Projection operator onto perpendicular 3-space with h_{ab} = g_{ab} + u_au_b.
- Covariant time derivative: $\dot{\psi}_{a,b} \equiv u^c \nabla_c \psi_{a,b}$
- Projected derivative: $\tilde{\nabla}_c \psi_{a...b} \equiv h_c^f h_a^d ... h_b^e \nabla_f \psi_{d...c}$

1+3 covariant formalism Propagation equations and constraints 1+1+2 covariant split

イロト イヨト イヨト イヨト

1+3 covariant formalism

1+3 covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^a. Projection operator onto perpendicular 3-space with h_{ab} = g_{ab} + u_au_b.
- Covariant time derivative: $\dot{\psi}_{a..b} \equiv u^c \nabla_c \psi_{a...b}$
- Projected derivative: $\tilde{\nabla}_{c}\psi_{a...b} \equiv h_{c}^{f}h_{a}^{d}...h_{b}^{e}\nabla_{f}\psi_{d...e}$

1+3 covariant formalism Propagation equations and constraints 1+1+2 covariant split

1+3 covariant formalism

• The covariant derivative of the 4-velocity can be decomposed as

$$\nabla_{a}u_{b} = -u_{a}\dot{u}_{b} + \tilde{\nabla}_{a}u_{b} = -u_{a}\dot{u}_{b} + \frac{1}{3}\theta h_{ab} + \omega_{ab} + \sigma_{ab}$$

where $\dot{u}_a \equiv u^b \nabla_b u_a$ is the acceleration, $\theta \equiv \tilde{\nabla}_a u^a$ the expansion, $\sigma_{ab} \equiv \tilde{\nabla}_{\langle a} u_{b \rangle}$ the shear and $\omega_{ab} \equiv \tilde{\nabla}_{[a} u_{b]}$ the vorticity of u^a .

• Other used varibles: Density μ , pressure $p = p(\mu)$ (barytropic eqution of state), cosmological constant Λ , the electric part of the Weyl tensor $E_{ab} \equiv C_{acbd} u^c u^d$ and the magnetic part of the Weyl tensor $H_{ab} \equiv \frac{1}{2} \eta_{ade} C^{de}_{\ \ bc} u^c$.

1+3 covariant formalism Propagation equations and constraints 1+1+2 covariant split

イロト イポト イヨト イヨト

1+3 covariant formalism

• The covariant derivative of the 4-velocity can be decomposed as

$$\nabla_{a}u_{b} = -u_{a}\dot{u}_{b} + \tilde{\nabla}_{a}u_{b} = -u_{a}\dot{u}_{b} + \frac{1}{3}\theta h_{ab} + \omega_{ab} + \sigma_{ab}$$

where $\dot{u}_a \equiv u^b \nabla_b u_a$ is the acceleration, $\theta \equiv \tilde{\nabla}_a u^a$ the expansion, $\sigma_{ab} \equiv \tilde{\nabla}_{\langle a} u_{b \rangle}$ the shear and $\omega_{ab} \equiv \tilde{\nabla}_{[a} u_{b]}$ the vorticity of u^a .

• Other used varibles: Density μ , pressure $p = p(\mu)$ (barytropic eqution of state), cosmological constant Λ , the electric part of the Weyl tensor $E_{ab} \equiv C_{acbd} u^c u^d$ and the magnetic part of the Weyl tensor $H_{ab} \equiv \frac{1}{2} \eta_{ade} C^{de}_{\ bc} u^c$.

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロト イポト イヨト イヨト

Propagation equations and constraints

Propagation equations and constraints for the case of perfect fluid with barytropic equation of state, $p = p(\mu)$, and zero vorticity, $\omega_{ab} = 0$ Propagation equations from Ricci identities:

$$\begin{split} \dot{\theta} &- \tilde{\nabla}_a \dot{u}^a = -\frac{1}{3}\theta^2 + \dot{u}_a \dot{u}^a - 2\sigma^2 - \frac{1}{2}(\mu + 3p) + \Lambda\,, \end{split}$$
 where $\sigma^2 \equiv \frac{1}{2}\sigma^{ab}\sigma_{ab}.$

$$\dot{\sigma}^{\langle ab\rangle} - \tilde{\nabla}^{\langle a}\dot{u}^{b\rangle} = -\frac{2}{3}\theta\sigma^{ab} + \dot{u}^{\langle a}\dot{u}^{b\rangle} - \sigma^{\langle a}{}_{c}\sigma^{b\rangle c} - E^{ab}$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロト イポト イヨト イヨト

Propagation equations and constraints

۲

Propagation equations and constraints for the case of perfect fluid with barytropic equation of state, $p = p(\mu)$, and zero vorticity, $\omega_{ab} = 0$ Propagation equations from Ricci identities:

$$\begin{split} \dot{\theta} - \tilde{\nabla}_a \dot{u}^a &= -\frac{1}{3}\theta^2 + \dot{u}_a \dot{u}^a - 2\sigma^2 - \frac{1}{2}(\mu + 3p) + \Lambda\,, \end{split}$$
 where $\sigma^2 \equiv \frac{1}{2}\sigma^{ab}\sigma_{ab}$.

$$\dot{\sigma}^{\langle ab\rangle} - \tilde{\nabla}^{\langle a} \dot{u}^{b\rangle} = -\frac{2}{3}\theta\sigma^{ab} + \dot{u}^{\langle a} \dot{u}^{b\rangle} - \sigma^{\langle a}{}_c \sigma^{b\rangle c} - E^{ab}$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロト イポト イヨト イヨト

Propagation equations and constraints

۲

۵

Propagation equations and constraints for the case of perfect fluid with barytropic equation of state, $p = p(\mu)$, and zero vorticity, $\omega_{ab} = 0$ Propagation equations from Ricci identities:

$$\begin{split} \dot{\theta} - \tilde{\nabla}_{a} \dot{u}^{a} &= -\frac{1}{3}\theta^{2} + \dot{u}_{a} \dot{u}^{a} - 2\sigma^{2} - \frac{1}{2}(\mu + 3p) + \Lambda \,, \end{split}$$
 where $\sigma^{2} \equiv \frac{1}{2}\sigma^{ab}\sigma_{ab}$.

$$\dot{\sigma}^{\langle ab\rangle} - \tilde{\nabla}^{\langle a} \dot{u}^{b\rangle} = -\frac{2}{3}\theta\sigma^{ab} + \dot{u}^{\langle a} \dot{u}^{b\rangle} - \sigma^{\langle a}{}_c \sigma^{b\rangle c} - E^{ab}$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

<ロ> (日) (日) (日) (日) (日)

3

Propagation equations and constraints

Constraints from Ricci identities:

$$\tilde{\nabla}_b \sigma^{ab} - \frac{2}{3} \tilde{\nabla}^a \theta = 0$$

$$H^{ab} = (\operatorname{curl} \sigma)^{ab} \equiv \eta^{cd < a} \tilde{\nabla}_c \sigma^{b>}{}_d \,,$$

$$\dot{\mu} = -\theta(\mu + p)$$

$$\tilde{\nabla}_a p + (\mu + p) \dot{u}_a = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

・ロン ・回と ・ヨン・

3

Propagation equations and constraints

Constraints from Ricci identities:

۲

$$\tilde{\nabla}_b \sigma^{ab} - \frac{2}{3} \tilde{\nabla}^a \theta = 0$$

$$H^{ab} = (\operatorname{curl} \sigma)^{ab} \equiv \eta^{cd < a} \tilde{\nabla}_c \sigma^{b>}{}_d \,,$$

$$\dot{\mu} = -\theta(\mu + p)$$

$$\tilde{\nabla}_a p + (\mu + p) \dot{u}_a = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロト イポト イヨト イヨト

Propagation equations and constraints

Constraints from Ricci identities:

۲

۲

$$\tilde{\nabla}_b \sigma^{ab} - \frac{2}{3} \tilde{\nabla}^a \theta = 0$$

$$H^{ab} = (\operatorname{curl} \sigma)^{ab} \equiv \eta^{cd < a} \tilde{\nabla}_c \sigma^{b > }{}_{d} \,,$$

$$\dot{\mu}=- heta(\mu+
ho)$$
 $ilde{
abla}_{a}
ho+(\mu+
ho)\dot{u}_{a}=$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロト イポト イヨト イヨト

э

Propagation equations and constraints

Constraints from Ricci identities:

۲

۲

۲

$$\tilde{\nabla}_b \sigma^{ab} - \frac{2}{3} \tilde{\nabla}^a \theta = 0$$

$$H^{ab} = (\operatorname{curl} \sigma)^{ab} \equiv \eta^{cd < a} \tilde{\nabla}_c \sigma^{b > }{}_d \,,$$

$$\dot{\mu} = -\theta(\mu + p)$$

$$\tilde{\nabla}_a p + (\mu + p) \dot{u}_a = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロト イポト イヨト イヨト

Propagation equations and constraints

Constraints from Ricci identities:

۲

۲

۲

۲

$$\tilde{\nabla}_b \sigma^{ab} - \frac{2}{3} \tilde{\nabla}^a \theta = 0$$

$$H^{ab} = (\operatorname{curl} \sigma)^{ab} \equiv \eta^{cd < a} \tilde{\nabla}_c \sigma^{b > }{}_d \,,$$

$$\dot{\mu} = - heta(\mu + p)$$

$$ilde{
abla}_{a} p + (\mu + p) \dot{u}_{a} = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロン イヨン イヨン イヨン

э

Propagation equations and constraints

Remaining Bianchi identities:

$$\dot{E}^{\langle ab\rangle} - (\operatorname{curl} H)^{ab} = -\frac{1}{2}(\mu + p)\sigma^{ab} - \theta E^{ab} + 3\sigma^{\langle a}{}_{c}E^{b\rangle c} + 2\eta^{cd\langle a}\dot{u}_{c}H^{b\rangle}{}_{d}$$

$$\dot{H}^{\langle ab\rangle} + (\operatorname{curl} E)^{ab} = -\theta H^{ab} + 3\sigma^{\langle a}{}_{c}H^{b\rangle c} - 2\eta^{cd\langle a}\dot{u}_{c}E^{b\rangle}{}_{d}$$

$$\tilde{\nabla}_{b}E^{ab} - \frac{1}{3}\tilde{\nabla}^{a}\mu - \eta^{abc}\sigma_{bd}H^{d}_{\ c} = 0$$

$$\tilde{\nabla}_b H^{ab} + \eta^{abc} \sigma_{bd} E^d{}_c = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

(ロ) (同) (E) (E) (E)

Propagation equations and constraints

Remaining Bianchi identities:

۲

$$\dot{E}^{\langle ab\rangle} - (\operatorname{curl} H)^{ab} = -\frac{1}{2}(\mu + p)\sigma^{ab} - \theta E^{ab} + 3\sigma^{\langle a}{}_{c}E^{b\rangle c} + 2\eta^{cd\langle a}\dot{u}_{c}H^{b\rangle}{}_{d}$$

 $\dot{H}^{\langle ab\rangle} + (\operatorname{curl} E)^{ab} = -\theta H^{ab} + 3\sigma^{\langle a}{}_{c}H^{b\rangle c} - 2\eta^{cd\langle a}\dot{u}_{c}E^{b\rangle}{}_{d}$

$$\tilde{\nabla}_b E^{ab} - \frac{1}{3} \tilde{\nabla}^a \mu - \eta^{abc} \sigma_{bd} H^d_{\ c} = 0$$

$$\tilde{\nabla}_b H^{ab} + \eta^{abc} \sigma_{bd} E^d{}_c = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロン イヨン イヨン イヨン

э

Propagation equations and constraints

Remaining Bianchi identities:

۲

$$\dot{E}^{\langle ab\rangle} - (\operatorname{curl} H)^{ab} = -\frac{1}{2}(\mu + p)\sigma^{ab} - \theta E^{ab} + 3\sigma^{\langle a}{}_{c}E^{b\rangle c} + 2\eta^{cd\langle a}\dot{u}_{c}H^{b\rangle}{}_{d}$$

$$\dot{H}^{\langle ab\rangle} + (\operatorname{curl} E)^{ab} = -\theta H^{ab} + 3\sigma^{\langle a}{}_{c}H^{b\rangle c} - 2\eta^{cd\langle a}\dot{u}_{c}E^{b\rangle}{}_{d}$$

$$\tilde{\nabla}_{b}E^{ab} - \frac{1}{3}\tilde{\nabla}^{a}\mu - \eta^{abc}\sigma_{bd}H^{d}{}_{c} = 0$$

$$\tilde{\nabla}_b H^{ab} + \eta^{abc} \sigma_{bd} E^d{}_c = 0$$

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

Propagation equations and constraints

Remaining Bianchi identities:

۲

۲

۲

$$\dot{E}^{\langle ab\rangle} - (\operatorname{curl} H)^{ab} = -\frac{1}{2}(\mu + p)\sigma^{ab} - \theta E^{ab} + 3\sigma^{\langle a}{}_{c}E^{b\rangle c} + 2\eta^{cd\langle a}\dot{u}_{c}H^{b\rangle}{}_{d}$$

$$\dot{H}^{\langle ab\rangle} + (\operatorname{curl} E)^{ab} = -\theta H^{ab} + 3\sigma^{\langle a}{}_{c}H^{b\rangle c} - 2\eta^{cd\langle a}\dot{u}_{c}E^{b\rangle}{}_{d}$$

$$\tilde{\nabla}_{b}E^{ab} - \frac{1}{3}\tilde{\nabla}^{a}\mu - \eta^{abc}\sigma_{bd}H^{d}_{\ c} = 0$$

$$\tilde{\nabla}_b H^{ab} + \eta^{abc} \sigma_{bd} E^d{}_c = 0$$

イロン イヨン イヨン イヨン

1+3 covariant formalism **Propagation equations and constraints** 1+1+2 covariant split

イロン イヨン イヨン イヨン

Propagation equations and constraints

Remaining Bianchi identities:

۲

۲

۲

$$\dot{E}^{\langle ab\rangle} - (\operatorname{curl} H)^{ab} = -\frac{1}{2}(\mu + p)\sigma^{ab} - \theta E^{ab} + 3\sigma^{\langle a}{}_{c}E^{b\rangle c} + 2\eta^{cd\langle a}\dot{u}_{c}H^{b\rangle}{}_{d}$$

$$\dot{H}^{\langle ab\rangle} + (\operatorname{curl} E)^{ab} = -\theta H^{ab} + 3\sigma^{\langle a}{}_{c}H^{b\rangle c} - 2\eta^{cd\langle a}\dot{u}_{c}E^{b\rangle}{}_{d}$$

$$\tilde{\nabla}_{b}E^{ab} - \frac{1}{3}\tilde{\nabla}^{a}\mu - \eta^{abc}\sigma_{bd}H^{d}_{\ c} = 0$$

$$\tilde{\nabla}_{b}H^{ab} + \eta^{abc}\sigma_{bd}E^{d}_{\ c} = 0$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロト イヨト イヨト イヨト

1+1+2 covariant split

1+1+2 covariant split of spacetime by Clarkson, Barret et.al.

- Prefered spacelike vector n^a with $u^a n_a = 0$. Projection operator onto perpendicular 2-space with $N_{ab} = h_{ab} - n_a n_b$.
- Derivative along *n^a*:

$$\hat{\psi}_{a\dots b} \equiv n^c \tilde{\nabla}_c \psi_{a\dots b} = n^c h^f_c h^d_a \dots h^e_b \nabla_f \psi_{d\dots e}$$

• Derivative perpendicular to *n*^a:

$$\delta_c \psi_{a...b} \equiv N_c^f N_a^d \dots N_b^e \tilde{\nabla}_f \psi_{d...e}$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロン イヨン イヨン イヨン

1+1+2 covariant split

1+1+2 covariant split of spacetime by Clarkson, Barret et.al.

 Prefered spacelike vector n^a with u^an_a = 0. Projection operator onto perpendicular 2-space with N_{ab} = h_{ab} - n_an_b.

• Derivative along *n*^a:

$$\hat{\psi}_{a\dots b} \equiv n^c \tilde{\nabla}_c \psi_{a\dots b} = n^c h^f_c h^d_a \dots h^e_b \nabla_f \psi_{d\dots e}$$

• Derivative perpendicular to *n*^a:

$$\delta_c \psi_{a...b} \equiv N_c^f N_a^d \dots N_b^e \tilde{\nabla}_f \psi_{d...e}$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロト イヨト イヨト イヨト

1+1+2 covariant split

1+1+2 covariant split of spacetime by Clarkson, Barret et.al.

- Prefered spacelike vector n^a with u^an_a = 0. Projection operator onto perpendicular 2-space with N_{ab} = h_{ab} - n_an_b.
- Derivative along *n^a*:

$$\hat{\psi}_{a\ldots b} \equiv n^c \tilde{\nabla}_c \psi_{a\ldots b} = n^c h^f_c h^d_a \dots h^e_b \nabla_f \psi_{d\ldots e}$$

• Derivative perpendicular to *n*^a:

$$\delta_c \psi_{a...b} \equiv N_c^f N_a^d \dots N_b^e \tilde{\nabla}_f \psi_{d...e}$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

1+1+2 covariant split

1+1+2 covariant split of spacetime by Clarkson, Barret et.al.

- Prefered spacelike vector n^a with $u^a n_a = 0$. Projection operator onto perpendicular 2-space with $N_{ab} = h_{ab} - n_a n_b$.
- Derivative along *n^a*:

$$\hat{\psi}_{\mathsf{a}\ldots b} \equiv \mathsf{n}^c \tilde{\nabla}_c \psi_{\mathsf{a}\ldots b} = \mathsf{n}^c \mathsf{h}^f_c \mathsf{h}^d_{\mathsf{a}} \ldots \mathsf{h}^e_b \nabla_f \psi_{\mathsf{d}\ldots e}$$

• Derivative perpendicular to n^a:

$$\delta_{c}\psi_{a\ldots b}\equiv N^{f}_{c}N^{d}_{a}\ldots N^{e}_{b}\tilde{\nabla}_{f}\psi_{d\ldots e}$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロン イヨン イヨン イヨン

æ

1+1+2 covariant split

• Decomposition of derivatives of *n*^a:

$$\begin{split} \tilde{\nabla}_{a}n_{b} &= n_{a}a_{b} + \frac{1}{2}\phi N_{ab} + \xi\epsilon_{ab} + \zeta_{ab} \\ \dot{n}_{a} &= \mathcal{A}u_{a} + \alpha_{a} \end{split}$$

where

$$\begin{aligned} \mathbf{a}_{a} &\equiv \hat{n}_{a}, \quad \phi \equiv \delta_{a} n^{a}, \quad \xi \equiv \frac{1}{2} \epsilon^{ab} \delta_{a} n_{b}, \quad \zeta_{ab} \equiv \delta_{\{a} n_{b\}}, \\ \mathcal{A} &\equiv n^{a} \dot{u}_{a}, \quad \alpha_{a} \equiv \dot{n}_{\bar{a}}, \quad \epsilon_{ab} \equiv \eta_{abc} n^{c} \equiv u^{d} \eta_{dabc} n^{c}. \end{aligned}$$

M. Bradley, P.K.S. Dunsby and M. Forsberg Density growth in Kantowski-Sachs cosmologies

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロン イヨン イヨン イヨン

3

1+1+2 covariant split

• Decomposition of derivatives of *n*^{*a*}:

$$\begin{split} \tilde{\nabla}_{a} n_{b} &= n_{a} a_{b} + \frac{1}{2} \phi N_{ab} + \xi \epsilon_{ab} + \zeta_{ab} \\ \dot{n}_{a} &= \mathcal{A} u_{a} + \alpha_{a} \end{split}$$

where

$$\begin{aligned} \mathbf{a}_{a} &\equiv \hat{n}_{a}, \quad \phi \equiv \delta_{a} n^{a}, \quad \xi \equiv \frac{1}{2} \epsilon^{ab} \delta_{a} n_{b}, \quad \zeta_{ab} \equiv \delta_{\{a} n_{b\}}, \\ \mathcal{A} &\equiv n^{a} \dot{u}_{a}, \quad \alpha_{a} \equiv \dot{n}_{\bar{a}}, \quad \epsilon_{ab} \equiv \eta_{abc} n^{c} \equiv u^{d} \eta_{dabc} n^{c}. \end{aligned}$$

 $1{+}3$ covariant formalism Propagation equations and constraints $1{+}1{+}2$ covariant split

イロン イヨン イヨン イヨン

3

1+1+2 covariant split

• Decomposition of derivatives of *n*^{*a*}:

$$\begin{split} \tilde{\nabla}_{a} n_{b} &= n_{a} a_{b} + \frac{1}{2} \phi N_{ab} + \xi \epsilon_{ab} + \zeta_{ab} \\ \dot{n}_{a} &= \mathcal{A} u_{a} + \alpha_{a} \end{split}$$

where

$$\begin{aligned} \mathbf{a}_{a} &\equiv \hat{n}_{a}, \quad \phi \equiv \delta_{a} n^{a}, \quad \xi \equiv \frac{1}{2} \epsilon^{ab} \delta_{a} n_{b}, \quad \zeta_{ab} \equiv \delta_{\{a} n_{b\}}, \\ \mathcal{A} &\equiv n^{a} \dot{u}_{a}, \quad \alpha_{a} \equiv \dot{n}_{\bar{a}}, \quad \epsilon_{ab} \equiv \eta_{abc} n^{c} \equiv u^{d} \eta_{dabc} n^{c}. \end{aligned}$$

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ .

• 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_2$. Locally Rotationally Symmetric (LRS).

$$ds^{2} = -dt^{2} + a_{1}^{2}(t)dz^{2} + a_{2}^{2}(t)\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

• The expansion and shear are given by

$$\theta = \frac{\dot{a}_1}{a_1} + 2\frac{\dot{a}_2}{a_2}$$

$$\Sigma \equiv \sigma_{11} = -2\sigma_{22} = -2\sigma_{33} = \frac{2}{3}\left(\frac{\dot{a}_1}{a_1} - \frac{\dot{a}_2}{a_2}\right)$$

• Can undergo bounce.

イロト イポト イヨト イヨト

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ .

• 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_2$. Locally Rotationally Symmetric (LRS).

$$ds^{2} = -dt^{2} + a_{1}^{2}(t)dz^{2} + a_{2}^{2}(t)\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

• The expansion and shear are given by

$$\theta = \frac{\dot{a}_1}{a_1} + 2\frac{\dot{a}_2}{a_2}$$

$$\Sigma \equiv \sigma_{11} = -2\sigma_{22} = -2\sigma_{33} = \frac{2}{3}\left(\frac{\dot{a}_1}{a_1} - \frac{\dot{a}_2}{a_2}\right)$$

• Can undergo bounce.

イロト イポト イヨト イヨト

Kantowski-Sachs

۲

Kantowski-Sachs cosmologies with cosmological constant Λ .

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_2$. Locally Rotationally Symmetric (LRS).
 - $ds^2 = -dt^2 + a_1^2(t)dz^2 + a_2^2(t)\left(d\theta^2 + \sin^2\theta d\varphi^2\right)$

• The expansion and shear are given by

$$\theta = \frac{\dot{a}_1}{a_1} + 2\frac{\dot{a}_2}{a_2}$$

$$\Sigma \equiv \sigma_{11} = -2\sigma_{22} = -2\sigma_{33} = \frac{2}{3} \left(\frac{\dot{a}_1}{a_1} - \frac{\dot{a}_2}{a_2}\right)$$

• Can undergo bounce.

Kantowski-Sachs

۲

Kantowski-Sachs cosmologies with cosmological constant Λ .

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_2$. Locally Rotationally Symmetric (LRS).
 - $ds^2 = -dt^2 + a_1^2(t)dz^2 + a_2^2(t)\left(d heta^2 + \sin^2 heta darphi^2
 ight)$
- The expansion and shear are given by

$$\theta = \frac{\dot{a}_1}{a_1} + 2\frac{\dot{a}_2}{a_2}$$

$$\Sigma \equiv \sigma_{11} = -2\sigma_{22} = -2\sigma_{33} = \frac{2}{3}\left(\frac{\dot{a}_1}{a_1} - \frac{\dot{a}_2}{a_2}\right)$$

イロト イポト イヨト イヨト

• Can undergo bounce.

Kantowski-Sachs

۲

Kantowski-Sachs cosmologies with cosmological constant Λ .

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_2$. Locally Rotationally Symmetric (LRS).
 - $ds^2 = -dt^2 + a_1^2(t)dz^2 + a_2^2(t)\left(d\theta^2 + \sin^2\theta d\varphi^2
 ight)$
- The expansion and shear are given by

$$\theta = \frac{\dot{a}_1}{a_1} + 2\frac{\dot{a}_2}{a_2}$$

$$\Sigma \equiv \sigma_{11} = -2\sigma_{22} = -2\sigma_{33} = \frac{2}{3}\left(\frac{\dot{a}_1}{a_1} - \frac{\dot{a}_2}{a_2}\right)$$

• Can undergo bounce.

イロト イポト イヨト イヨト

Vacuum solutions

All vacuum Kantowski-Sachs can be found

• The equilibrium points $\pm X$:

$$ds^2 = -dt^2 + e^{\pm 2\sqrt{\Lambda}t}dz^2 + \frac{1}{\Lambda}\left(d\theta^2 + \sin^2\theta d\varphi^2\right)$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, 60, 023502 (1999)

 $ds^2 = -dt^2 + f^2(t)$

where $f(t) = a_0 \cosh(\sqrt{\Lambda}t)$ or $f(t) = a_0 \sinh(\sqrt{\Lambda}t)$. The first experiences a bounce in the z-direction.

• Schwarzschild-de Sitter:

$$ds^{2} = -A^{-1}dT^{2} + Adz^{2} + T^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

where $A \equiv \left(\frac{2M}{T} - 1 + \frac{\Lambda}{3}T^2\right)$

M. Bradley, P.K.S. Dunsby and M. Forsberg

Vacuum solutions

All vacuum Kantowski-Sachs can be found

• The equilibrium points $\pm X$:

$$ds^2 = -dt^2 + e^{\pm 2\sqrt{\Lambda}t}dz^2 + rac{1}{\Lambda}\left(d heta^2 + \sin^2 heta darphi^2
ight).$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, **60**, 023502 (1999)

$$ds^{2} = -dt^{2} + f^{2}(t)dz^{2} + \frac{1}{\Lambda}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

where $f(t) = a_0 \cosh(\sqrt{\Lambda}t)$ or $f(t) = a_0 \sinh(\sqrt{\Lambda}t)$. The first experiences a bounce in the *z*-direction.

• Schwarzschild-de Sitter:

$$ds^{2} = -A^{-1}dT^{2} + Adz^{2} + T^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

where $A \equiv \left(\frac{2M}{T} - 1 + \frac{\Lambda}{3}T^2\right)$

Vacuum solutions

۵

All vacuum Kantowski-Sachs can be found

• The equilibrium points $\pm X$:

$$ds^2 = -dt^2 + e^{\pm 2\sqrt{\Lambda}t}dz^2 + rac{1}{\Lambda}\left(d heta^2 + \sin^2 heta darphi^2
ight).$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, 60, 023502 (1999)

$$ds^2 = -dt^2 + f^2(t)dz^2 + rac{1}{\Lambda}\left(d heta^2 + \sin^2 heta darphi^2
ight)$$

where $f(t) = a_0 \cosh(\sqrt{\Lambda}t)$ or $f(t) = a_0 \sinh(\sqrt{\Lambda}t)$. The first experiences a bounce in the *z*-direction.

• Schwarzschild-de Sitter:

$$ds^{2} = -A^{-1}dT^{2} + Adz^{2} + T^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

where $A \equiv \left(\frac{2M}{T} - 1 + \frac{\Lambda}{3}T^2\right)$
Vacuum solutions

All vacuum Kantowski-Sachs can be found

• The equilibrium points $\pm X$:

$$ds^2 = -dt^2 + e^{\pm 2\sqrt{\Lambda}t}dz^2 + rac{1}{\Lambda}\left(d heta^2 + \sin^2 heta darphi^2
ight).$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, 60, 023502 (1999)

$$ds^2 = -dt^2 + f^2(t)dz^2 + rac{1}{\Lambda}\left(d heta^2 + \sin^2 heta darphi^2
ight)$$

where $f(t) = a_0 \cosh(\sqrt{\Lambda}t)$ or $f(t) = a_0 \sinh(\sqrt{\Lambda}t)$. The first experiences a bounce in the *z*-direction.

• Schwarzschild-de Sitter:

$$ds^2 = -A^{-1}dT^2 + Adz^2 + T^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2
ight),$$

where $A \equiv \left(\frac{2M}{T} - 1 + \frac{\Lambda}{3}T^2\right)$.

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Density perturbations

Purpose:

To study the time-development of first order density perturbations on Kantowski-Sachs backgrounds and in particular on those undergoing bounces, i.e. those where expansion changes sign in one or several directions.

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Inhomogeneity variables

As inhomogeneity variable we use

• The density gradient: $D_a \equiv \frac{a\tilde{\nabla}_a \mu}{\mu}$.

Here *a* is the average scale factor, defined from $\theta = 3\frac{\dot{a}}{a}$.

- The density fluctuations $\frac{\delta\mu}{\mu}$ on a length scale l are related to the quantity \mathcal{D}_a through $\frac{\delta\mu}{\mu} \sim (\mathcal{D}_a \mathcal{D}^a)^{1/2} l/a = (\mathcal{D}_a \mathcal{D}^a)^{1/2} l_0$, where $l_0 = l/a$ is the comoving dimensionless length scale.
- To close the system, the following auxillary quantities will by used $Z_a \equiv a \tilde{\nabla}_a \theta$, $T_a \equiv a \tilde{\nabla}_a \sigma^2$, $S_a \equiv a \tilde{\nabla}_a (\sigma^{ab} S_{ab})$. where S_{ab} is the traceless part of the 3-Ricci tensor (can be written in a covariant way when $\omega_{ab} = 0$).

・ロト ・回ト ・ヨト

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Inhomogeneity variables

As inhomogeneity variable we use

• The density gradient: $D_a \equiv \frac{a \tilde{\nabla}_a \mu}{\mu}$.

Here *a* is the average scale factor, defined from $\theta = 3\frac{\dot{a}}{a}$.

- The density fluctuations $\frac{\delta\mu}{\mu}$ on a length scale I are related to the quantity \mathcal{D}_a through $\frac{\delta\mu}{\mu} \sim (\mathcal{D}_a\mathcal{D}^a)^{1/2}I/a = (\mathcal{D}_a\mathcal{D}^a)^{1/2}I_0$, where $I_0 = I/a$ is the comoving dimensionless length scale.
- To close the system, the following auxillary quantities will by used $Z_a \equiv a \tilde{\nabla}_a \theta$, $T_a \equiv a \tilde{\nabla}_a \sigma^2$, $S_a \equiv a \tilde{\nabla}_a (\sigma^{ab} S_{ab})$. where S_{ab} is the traceless part of the 3-Ricci tensor (can be written in a covariant way when $\omega_{ab} = 0$).

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Inhomogeneity variables

As inhomogeneity variable we use

• The density gradient: $D_a \equiv \frac{a \tilde{\nabla}_a \mu}{\mu}$.

Here *a* is the average scale factor, defined from $\theta = 3\frac{\dot{a}}{a}$.

- The density fluctuations $\frac{\delta\mu}{\mu}$ on a length scale I are related to the quantity \mathcal{D}_a through $\frac{\delta\mu}{\mu} \sim (\mathcal{D}_a\mathcal{D}^a)^{1/2}I/a = (\mathcal{D}_a\mathcal{D}^a)^{1/2}I_0$, where $I_0 = I/a$ is the comoving dimensionless length scale.
- To close the system, the following auxillary quantities will by used $Z_a \equiv a \tilde{\nabla}_a \theta$, $\mathcal{T}_a \equiv a \tilde{\nabla}_a \sigma^2$, $\mathcal{S}_a \equiv a \tilde{\nabla}_a (\sigma^{ab} S_{ab})$. where S_{ab} is the traceless part of the 3-Ricci tensor (can be written in a covariant way when $\omega_{ab} = 0$).

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

The propagation equations for inhomogeneity variables are obtained by taking the gradients of the original propagation equations. The following commutator is then used:

$$\tilde{\nabla}_{a}(\dot{f}) - (\tilde{\nabla}_{a}f)^{\cdot} = -\dot{u}_{a}\dot{f} + \frac{1}{3}\theta\tilde{\nabla}_{a}f + \sigma_{a}{}^{c}\tilde{\nabla}_{c}f \,.$$

• The equations are then projected along the prefered direction n^a and onto the perpendicular 2-space with N_{ab} as

$$\mathcal{D} \equiv \mathcal{D}_{a} n^{a} \,, \; \mathcal{Z} \equiv \mathcal{Z}_{a} n^{a} \,, \; \mathcal{T} \equiv \mathcal{T}_{a} n^{a} \,, \; \mathcal{S} \equiv \mathcal{S}_{a} n^{a}$$

and

$$\mathcal{D}_{\bar{a}} \equiv \mathcal{D}_b N^{ab} \,, \, \mathcal{Z}_{\bar{a}} \equiv \mathcal{Z}_b N^{ab} \,, \, \mathcal{T}_{\bar{a}} \equiv \mathcal{T}_b N^{ab} \,, \, \mathcal{S}_{\bar{a}} \equiv \mathcal{S}_b N^{ab}$$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

The propagation equations for inhomogeneity variables are obtained by taking the gradients of the original propagation equations. The following commutator is then used:

$$\tilde{\nabla}_{a}(\dot{f}) - (\tilde{\nabla}_{a}f)^{\cdot} = -\dot{u}_{a}\dot{f} + \frac{1}{3}\theta\tilde{\nabla}_{a}f + \sigma_{a}{}^{c}\tilde{\nabla}_{c}f$$

• The equations are then projected along the prefered direction n^a and onto the perpendicular 2-space with N_{ab} as

$$\mathcal{D} \equiv \mathcal{D}_{a} n^{a} \,, \; \mathcal{Z} \equiv \mathcal{Z}_{a} n^{a} \,, \; \mathcal{T} \equiv \mathcal{T}_{a} n^{a} \,, \; \mathcal{S} \equiv \mathcal{S}_{a} n^{a}$$

and

۵

$$\mathcal{D}_{\bar{a}} \equiv \mathcal{D}_b N^{ab} \,, \, \mathcal{Z}_{\bar{a}} \equiv \mathcal{Z}_b N^{ab} \,, \, \mathcal{T}_{\bar{a}} \equiv \mathcal{T}_b N^{ab} \,, \, \mathcal{S}_{\bar{a}} \equiv \mathcal{S}_b N^{ab}$$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

The propagation equations for inhomogeneity variables are obtained by taking the gradients of the original propagation equations. The following commutator is then used:

$$\tilde{\nabla}_{a}(\dot{f}) - (\tilde{\nabla}_{a}f)^{\cdot} = -\dot{u}_{a}\dot{f} + \frac{1}{3}\theta\tilde{\nabla}_{a}f + \sigma_{a}{}^{c}\tilde{\nabla}_{c}f$$

• The equations are then projected along the prefered direction n^a and onto the perpendicular 2-space with N_{ab} as

$$\mathcal{D} \equiv \mathcal{D}_{a} n^{a} \,, \; \mathcal{Z} \equiv \mathcal{Z}_{a} n^{a} \,, \; \mathcal{T} \equiv \mathcal{T}_{a} n^{a} \,, \; \mathcal{S} \equiv \mathcal{S}_{a} n^{a}$$

and

$$\mathcal{D}_{\bar{a}} \equiv \mathcal{D}_b N^{ab} \,, \; \mathcal{Z}_{\bar{a}} \equiv \mathcal{Z}_b N^{ab} \,, \; \mathcal{T}_{\bar{a}} \equiv \mathcal{T}_b N^{ab} \,, \; \mathcal{S}_{\bar{a}} \equiv \mathcal{S}_b N^{ab}$$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

• To get spatial derivatives in the form of two Lacplace-like operators $\delta^2 \equiv \delta_a \delta^a$ and $\hat{\Delta} \equiv n^a \tilde{\nabla}_a n^b \tilde{\nabla}_b$ it is suitable to act on the two systems with $n^a \tilde{\nabla}_a$ and δ_a respectively.

New variables are then defined as

$$\hat{\mathcal{D}} \equiv n^a \tilde{
abla}_a \mathcal{D}$$
 and $\mathcal{D} \equiv \delta^a \mathcal{D}_{\overline{a}}$

and similarly for the other variables.

• To remove some singular terms we then redefine $\hat{\mathcal{T}}$ and \mathcal{T} according to

$$\hat{\mathcal{T}}_{old} = \Sigma^2 \hat{\mathcal{T}}_{new} + \frac{\Sigma}{\tilde{S}} \hat{S}$$
 and $\mathcal{T}_{old} = \Sigma^2 \mathcal{T}_{new} + \frac{\Sigma}{\tilde{S}} \hat{S}$

イロン イヨン イヨン イヨン

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

- To get spatial derivatives in the form of two Lacplace-like operators $\delta^2 \equiv \delta_a \delta^a$ and $\hat{\Delta} \equiv n^a \tilde{\nabla}_a n^b \tilde{\nabla}_b$ it is suitable to act on the two systems with $n^a \tilde{\nabla}_a$ and δ_a respectively.
- New variables are then defined as

$$\hat{\mathcal{D}} \equiv n^a \tilde{
abla}_a \mathcal{D}$$
 and $\mathcal{D} \equiv \delta^a \mathcal{D}_{\bar{a}}$

and similarly for the other variables.

• To remove some singular terms we then redefine $\hat{\mathcal{T}}$ and \mathcal{T} according to

$$\hat{\mathcal{T}}_{old} = \Sigma^2 \hat{\mathcal{T}}_{new} + \frac{\Sigma}{\tilde{S}} \hat{\mathcal{S}} \text{ and } \mathcal{T}_{old} = \Sigma^2 \mathcal{T}_{new} + \frac{\Sigma}{\tilde{S}} \hat{\mathcal{S}}$$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

- To get spatial derivatives in the form of two Lacplace-like operators $\delta^2 \equiv \delta_a \delta^a$ and $\hat{\Delta} \equiv n^a \tilde{\nabla}_a n^b \tilde{\nabla}_b$ it is suitable to act on the two systems with $n^a \tilde{\nabla}_a$ and δ_a respectively.
- New variables are then defined as

$$\hat{\mathcal{D}} \equiv n^a \tilde{
abla}_a \mathcal{D}$$
 and $\mathcal{D} \equiv \delta^a \mathcal{D}_{\bar{a}}$

and similarly for the other variables.

• To remove some singular terms we then redefine $\hat{\mathcal{T}}$ and \mathcal{T} according to

$$\hat{\mathcal{T}}_{old} = \Sigma^2 \hat{\mathcal{T}}_{new} + \frac{\Sigma}{\tilde{S}} \hat{\mathcal{S}} \text{ and } \mathcal{T}_{old} = \Sigma^2 \mathcal{T}_{new} + \frac{\Sigma}{\tilde{S}} \mathcal{S}$$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

First order system for hat variables

$$\begin{split} \dot{\hat{\mathcal{D}}} &= \left[\theta\left(\frac{p}{\mu} - \frac{1}{3}\right) - 2\Sigma\right]\hat{\mathcal{D}} - \left(1 + \frac{p}{\mu}\right)\hat{\mathcal{Z}} \\ \dot{\hat{\mathcal{Z}}} &= -\left(\theta + 2\Sigma\right)\hat{\mathcal{Z}} - 2\Sigma^{2}\hat{\mathcal{T}} + \left[-\frac{1}{2}\mu + \frac{3}{2}\frac{\mu p'}{\mu + p}\left(\tilde{S} + \frac{3}{2}\Sigma^{2}\right)\right]\hat{\mathcal{D}} - \\ &-2\frac{\Sigma}{\tilde{S}}\hat{\mathcal{S}} - \frac{\mu p'}{\mu + p}\hat{\Delta}\left[\hat{\mathcal{D}} + \mathcal{P}\right] \end{split}$$

where

$$\tilde{S} = -\frac{2}{3}\mu - \frac{2}{3}\Lambda - \frac{1}{2}\Sigma^2 + \frac{2}{9}\theta^2 = -\frac{2}{3}K < 0$$

to zeroth order and

イロン イヨン イヨン イヨン

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

$$\begin{split} \dot{\hat{\mathcal{T}}} &= -\left(\frac{1}{3}\theta + 2\Sigma + \frac{\Sigma^3}{\tilde{S}}\right)\hat{\mathcal{T}} - \left(\frac{\Sigma^2}{\tilde{S}^2} + \frac{1}{\tilde{S}}\right)\hat{S} \\ &- \left[\frac{\Sigma\mu}{\tilde{S}} + \frac{\mu p'}{\mu + p}\left(\theta - \frac{3}{2}\Sigma\right)\right]\hat{\mathcal{D}} + \left(1 + \frac{2}{3}\frac{\Sigma\theta}{\tilde{S}}\right)\hat{\mathcal{Z}} \\ &+ \frac{\mu p'}{\mu + p}\frac{1}{\tilde{S}}\left[\left(\frac{1}{2}\Sigma - \frac{1}{3}\theta\right)\hat{\Delta}\hat{\mathcal{D}} - \left(\Sigma - \frac{1}{6}\theta\right)\hat{\Delta}\left(\mathcal{P}\right)\right] \\ &- \frac{1}{\tilde{S}}\hat{\Delta}(\hat{\mathcal{Z}} - \frac{1}{2}\mathcal{Z}) + \frac{\Sigma}{\tilde{S}}\hat{\Delta}(\hat{\mathcal{T}} + \mathcal{T}) + \frac{1}{\tilde{S}^2}\hat{\Delta}(\hat{S} + \mathcal{S}) \end{split}$$

M. Bradley, P.K.S. Dunsby and M. Forsberg Density growth in Kantowski-Sachs cosmologies

イロン イヨン イヨン イヨン

æ

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

$$\begin{split} \dot{\hat{\mathcal{S}}} &= \left[\mu \Sigma^2 + \frac{\mu p'}{\mu + p} \tilde{\mathcal{S}} \left(\frac{5}{2} \theta \Sigma + \frac{3}{2} \tilde{\mathcal{S}} - \frac{3}{2} \Sigma^2 \right) \right] \hat{\mathcal{D}} - \left(\frac{2}{3} \theta \Sigma + \frac{5}{2} \tilde{\mathcal{S}} \right) \Sigma \hat{\mathcal{Z}} \\ &+ \left(\Sigma^4 + 2 \tilde{\mathcal{S}}^2 \right) \hat{\mathcal{T}} + \left(\frac{\Sigma^3}{\tilde{\mathcal{S}}} - 2\theta \right) \hat{\mathcal{S}} + \Sigma \hat{\Delta} \hat{\mathcal{Z}} - \frac{1}{2} \Sigma \hat{\Delta} \left(\mathcal{Z} \right) - \Sigma^2 \hat{\Delta} \hat{\mathcal{T}} + \\ &\frac{\mu p'}{\mu + p} \left[\left(\frac{1}{3} \theta \Sigma - \tilde{\mathcal{S}} - \frac{1}{2} \Sigma^2 \right) \hat{\Delta} \hat{\mathcal{D}} + \frac{1}{2} \left(\tilde{\mathcal{S}} - \frac{1}{3} \theta \Sigma + 2 \Sigma^2 \right) \hat{\Delta} \left(\mathcal{P} \right) \right] \\ &- \frac{\Sigma}{\tilde{\mathcal{S}}} \hat{\Delta} (\hat{\mathcal{S}} + \mathcal{S}) - \Sigma^2 \hat{\Delta} \left(\mathcal{T} \right) \end{split}$$

イロン イヨン イヨン イヨン

æ

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

First order system for slashed variables

$$\begin{split} \dot{\mathcal{P}} &= \left[\theta\left(\frac{p}{\mu} - \frac{1}{3}\right) + \Sigma\right] \mathcal{P} - \left(1 + \frac{p}{\mu}\right) \mathcal{Z} \\ \dot{\mathcal{Z}} &= \left(\Sigma - \theta\right) \mathcal{Z} - 2\Sigma^2 \mathcal{T} + \left[-\frac{1}{2}\mu + \frac{3}{2}\frac{\mu p'}{\mu + p}\left(\tilde{S} + \frac{3}{2}\Sigma^2\right)\right] \mathcal{P} - \\ &- 2\frac{\Sigma}{\tilde{S}} \mathcal{S} - \frac{\mu p'}{\mu + p} \delta^2 \left[\hat{\mathcal{D}} + \mathcal{P}\right] \end{split}$$

イロン イヨン イヨン イヨン

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

$$\begin{split} \dot{\mathcal{T}} &= -\left(\frac{1}{3}\theta - \Sigma + \frac{\Sigma^3}{\tilde{S}}\right)\mathcal{T} - \left(\frac{\Sigma^2}{\tilde{S}^2} + \frac{1}{\tilde{S}}\right)\mathcal{S} - \\ & \left[\frac{\Sigma\mu}{\tilde{S}} + \frac{\mu p'}{\mu + p}\left(\theta - \frac{3}{2}\Sigma\right)\right]\mathcal{P} + \left(1 + \frac{2}{3}\frac{\Sigma\theta}{\tilde{S}}\right)\mathcal{Z} \\ & + \frac{\mu p'}{\mu + p}\frac{1}{\tilde{S}}\left[\left(\frac{1}{2}\Sigma - \frac{1}{3}\theta\right)\delta^2\hat{\mathcal{D}} - \left(\Sigma - \frac{1}{6}\theta\right)\delta^2\left(\mathcal{P}\right)\right] \\ & - \frac{1}{\tilde{S}}\delta^2(\hat{\mathcal{Z}} - \frac{1}{2}\mathcal{Z}) + \frac{\Sigma}{\tilde{S}}\delta^2(\hat{\mathcal{T}} + \mathcal{T}) + \frac{1}{\tilde{S}^2}\delta^2(\hat{\mathcal{S}} + \mathcal{S}) \end{split}$$

イロン イヨン イヨン イヨン

æ

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

First order equations

$$\begin{split} \dot{\mathcal{S}} &= \left[\mu \Sigma^2 + \frac{\mu p'}{\mu + p} \tilde{S} \left(\frac{5}{2} \theta \Sigma + \frac{3}{2} \tilde{S} - \frac{3}{2} \Sigma^2 \right) \right] \mathcal{P} - \left(\frac{2}{3} \theta \Sigma + \frac{5}{2} \tilde{S} \right) \Sigma \mathcal{Z} \\ &+ \left(\Sigma^4 + 2 \tilde{S}^2 \right) \mathcal{T} + \left(\frac{\Sigma^3}{\tilde{S}} - 2\theta + 3\Sigma \right) \mathcal{S} + \Sigma \delta^2 \left(\hat{\mathcal{Z}} - \frac{1}{2} \mathcal{Z} \right) + \\ &\frac{\mu p'}{\mu + p} \left[\left(\frac{1}{3} \theta \Sigma - \frac{1}{2} \Sigma^2 - \tilde{S} \right) \delta^2 \hat{\mathcal{D}} + \frac{1}{2} \left(\tilde{S} - \frac{1}{3} \theta \Sigma + 2\Sigma^2 \right) \delta^2 (\mathcal{P}) \right] \\ &- \frac{\Sigma}{\tilde{S}} \delta^2 (\hat{\mathcal{S}} + \mathcal{S}) - \Sigma^2 \delta^2 \left(\hat{\mathcal{T}} + \mathcal{T} \right) \,. \end{split}$$

イロン イヨン イヨン イヨン

æ

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Harmonic decomposition

Harmonic decomposition in terms of comoving wavenumbers $k_{||}$ and k_{\perp}

 $\Psi = \sum_{k_\parallel,k_\perp} \Psi_{k_\parallel k_\perp} P_{k_\parallel} Q_{k_\perp}$

$$\hat{\Delta}P_{k_{\parallel}} = -\frac{k_{\parallel}^2}{a_1^2}P_{k_{\parallel}}, \quad \delta_a P_{k_{\parallel}} = \dot{P}_{k_{\parallel}} = 0$$

Can be chosen as $P_{k_{\parallel}} = e^{ik_{\parallel}z}$ where z in 1-direction.

۲

٠

$$\delta^2 Q_\perp = -\frac{k_\perp^2}{a_2^2} Q_\perp \,, \quad \hat{Q}_\perp = \dot{Q}_\perp = 0$$

C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

M. Bradley, P.K.S. Dunsby and M. Forsberg

Density growth in Kantowski-Sachs cosmologies

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Harmonic decomposition

۲

۲

Harmonic decomposition in terms of comoving wavenumbers $k_{||}$ and k_{\perp}

 $\Psi = \sum_{k_\parallel,k_\perp} \Psi_{k_\parallel k_\perp} P_{k_\parallel} Q_{k_\perp}$

$$\hat{\Delta}P_{k_{\parallel}} = -rac{k_{\parallel}^2}{a_1^2}P_{k_{\parallel}}, \quad \delta_a P_{k_{\parallel}} = \dot{P}_{k_{\parallel}} = 0$$

Can be chosen as $P_{k_{\parallel}} = e^{ik_{\parallel}z}$ where z in 1-direction.

$$\delta^2 Q_\perp = -\frac{k_\perp^2}{a_2^2} Q_\perp \,, \quad \hat{Q}_\perp = \dot{Q}_\perp = 0$$

C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

4

Density growth in Kantowski-Sachs cosmologies

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Harmonic decomposition

۲

۲

۲

Harmonic decomposition in terms of comoving wavenumbers $k_{||}$ and k_{\perp}

 $\Psi = \sum_{k_\parallel,k_\perp} \Psi_{k_\parallel k_\perp} P_{k_\parallel} Q_{k_\perp}$

$$\hat{\Delta}P_{k_{\parallel}}=-rac{k_{\parallel}^2}{a_1^2}P_{k_{\parallel}}\,,\quad \delta_aP_{k_{\parallel}}=\dot{P}_{k_{\parallel}}=0$$

Can be chosen as $P_{k_{\parallel}} = e^{ik_{\parallel}z}$ where z in 1-direction.

$$\delta^2 Q_\perp = - rac{k_\perp^2}{a_2^2} Q_\perp \,, \quad \hat{Q}_\perp = \dot{Q}_\perp = 0$$

C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Analytical solutions

Exact solutions to the perturbed equations can be found around some of the vacuum solutions for the limit $k_{\parallel} = k_{\perp} = 0$ (i.e. infinite wavelenght). Could approximate the growth/decay of long wave density perturbations for the case $p << \mu << \Lambda$.

• Perturbations around vacuum bounce solution:

$$ds^{2} = -dt^{2} + a_{0}^{2}\cosh^{2}(\sqrt{\Lambda}t)dz^{2} + \frac{1}{\Lambda}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right):$$

$$\hat{\mathcal{D}} = \left(A_{1} + A_{2}\theta\right)\left(\Lambda - \theta^{2}\right)^{5/6} + A_{3}\theta\left(\Lambda - \theta^{2}\right)^{1/3} + A_{4}\left(\Lambda - \theta^{2}\right)^{5/6} \times \left(\frac{1}{2}\ln\left(1 - \frac{\theta^{2}}{\Lambda}\right) - \frac{\theta}{4\sqrt{\Lambda}}\ln\left(\frac{\sqrt{\Lambda} + \theta}{\sqrt{\Lambda - \theta}}\right) + \frac{\theta}{\sqrt{\Lambda - \theta^{2}}}\arcsin\left(\frac{\theta}{\sqrt{\Lambda}}\right)\right) \text{ and }$$

$$\tilde{\mathcal{D}} = \left(\frac{a_{1}}{a_{2}}\right)^{2}\hat{\mathcal{D}} = \hat{\mathcal{D}}/(\Lambda - \theta^{2}), \text{ where } \theta = \sqrt{\Lambda} \tanh(\sqrt{\Lambda}t).$$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Analytical solutions

Exact solutions to the perturbed equations can be found around some of the vacuum solutions for the limit $k_{\parallel} = k_{\perp} = 0$ (i.e. infinite wavelenght). Could approximate the growth/decay of long wave density perturbations for the case $p << \mu << \Lambda$.

• Perturbations around vacuum bounce solution:

$$ds^{2} = -dt^{2} + a_{0}^{2}\cosh^{2}(\sqrt{\Lambda}t)dz^{2} + \frac{1}{\Lambda}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right):$$

$$\hat{\mathcal{D}} = (A_{1} + A_{2}\theta)\left(\Lambda - \theta^{2}\right)^{5/6} + A_{3}\theta\left(\Lambda - \theta^{2}\right)^{1/3} + A_{4}\left(\Lambda - \theta^{2}\right)^{5/6} \times \left(\frac{1}{2}\ln\left(1 - \frac{\theta^{2}}{\Lambda}\right) - \frac{\theta}{4\sqrt{\Lambda}}\ln\left(\frac{\sqrt{\Lambda} + \theta}{\sqrt{\Lambda - \theta}}\right) + \frac{\theta}{\sqrt{\Lambda - \theta^{2}}}\arcsin\left(\frac{\theta}{\sqrt{\Lambda}}\right)\right) \text{ and }$$

$$\mathcal{P} = \left(\frac{a_{1}}{a_{2}}\right)^{2}\hat{\mathcal{D}} = \hat{\mathcal{D}}/(\Lambda - \theta^{2}), \text{ where } \theta = \sqrt{\Lambda}\tanh(\sqrt{\Lambda}t).$$

・ロン ・回と ・ヨン・

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Analytical solutions

Exact solutions to the perturbed equations can be found around some of the vacuum solutions for the limit $k_{\parallel} = k_{\perp} = 0$ (i.e. infinite wavelenght). Could approximate the growth/decay of long wave density perturbations for the case $p << \mu << \Lambda$.

• Perturbations around vacuum bounce solution:

$$ds^{2} = -dt^{2} + a_{0}^{2} \cosh^{2}(\sqrt{\Lambda}t)dz^{2} + \frac{1}{\Lambda} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right):$$
• $\hat{\mathcal{D}} = (A_{1} + A_{2}\theta) \left(\Lambda - \theta^{2}\right)^{5/6} + A_{3}\theta \left(\Lambda - \theta^{2}\right)^{1/3} + A_{4} \left(\Lambda - \theta^{2}\right)^{5/6} \times \left(\frac{1}{2} \ln\left(1 - \frac{\theta^{2}}{\Lambda}\right) - \frac{\theta}{4\sqrt{\Lambda}} \ln\left(\frac{\sqrt{\Lambda} + \theta}{\sqrt{\Lambda - \theta}}\right) + \frac{\theta}{\sqrt{\Lambda - \theta^{2}}} \arcsin\left(\frac{\theta}{\sqrt{\Lambda}}\right)\right) \text{ and } \mathcal{D} = \left(\frac{a_{1}}{a_{2}}\right)^{2} \hat{\mathcal{D}} = \hat{\mathcal{D}}/(\Lambda - \theta^{2}), \text{ where } \theta = \sqrt{\Lambda} \tanh(\sqrt{\Lambda}t).$

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

$\hat{\mathcal{D}}$ -modes

・ロト ・回ト ・ヨト ・ヨト

Э

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

\mathcal{D} -modes

M. Bradley, P.K.S. Dunsby and M. Forsberg Density growth in Kantowski-Sachs cosmologies

・ロト ・回ト ・モト ・モト

Э

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p = \frac{1}{3}\mu$.
- The anisotropy direction n_a starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\parallel} \rightarrow \sqrt{\Lambda/3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda/3}$, so that $\theta \rightarrow \sqrt{3\Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point ₊X for an intermediate period and then eventually approaches de Sitter.

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p = \frac{1}{3}\mu$.
- The anisotropy direction n_a starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\parallel} \rightarrow \sqrt{\Lambda/3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda/3}$, so that $\theta \rightarrow \sqrt{3\Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point ₊X for an intermediate period and then eventually approaches de Sitter.

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p = \frac{1}{3}\mu$.
- The anisotropy direction n_a starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\parallel} \rightarrow \sqrt{\Lambda/3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda/3}$, so that $\theta \rightarrow \sqrt{3\Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point ₊X for an intermediate period and then eventually approaches de Sitter.

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p = \frac{1}{3}\mu$.
- The anisotropy direction n_a starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\parallel} \rightarrow \sqrt{\Lambda/3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda/3}$, so that $\theta \rightarrow \sqrt{3\Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point ₊X for an intermediate period and then eventually approaches de Sitter.

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p = \frac{1}{3}\mu$.
- The anisotropy direction n_a starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\parallel} \rightarrow \sqrt{\Lambda/3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda/3}$, so that $\theta \rightarrow \sqrt{3\Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point ₊X for an intermediate period and then eventually approaches de Sitter.

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Э

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Numerical solutions

The growth of the density perturbations \hat{D} and \mathcal{P} for the wave numbers $k_{\parallel}/a_{10} = k_{\perp}/a_{20} = 0, 1, 5$ and 20. Initially, at $t_0 = 1$, $\hat{D} = \mathcal{P} = 0.001$.

M. Bradley, P.K.S. Dunsby and M. Forsberg Density growth in Kantowski-Sachs cosmologies

・ロト ・回ト ・ヨト ・ヨト

Э

▲ロン ▲御と ▲注と ▲注と

Э

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu << \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu << \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.
Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu << \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu << \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu << \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

イロト イポト イヨト イヨト

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu << \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

イロト イポト イヨト イヨト

In memory of Brian Edgar

イロン イヨン イヨン イヨン