Density growth in Kantowski-Sachs cosmologies with cosmological constant

Michael Bradley, Peter Dunsby and Mats Forsberg

Umeå University and University of Cape Town

ERE2010, 9 September 2010, Granada
(1) $1+3$ and $1+1+2$ covariant formalisms

- $1+3$ covariant formalism
- Propagation equations and constraints
- $1+1+2$ covariant split
(2) Kantowski-Sachs
(3) Density perturbations
- Inhomogeneity variables
- First order equations
- Harmonic decomposition
- Numerical solutions

4 Summary and outlook

$1+3$ covariant formalism

$1+3$ covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^{a}. Projection operator onto perpendicular 3-space with
- Covariant time derivative:
- Projected derivative: $\tilde{\nabla}_{c} \psi_{a \ldots b} \equiv h_{c}^{f} h_{a}^{d} \ldots h_{b}^{e} \nabla_{f} \psi_{d \ldots e}$
G.F.R Ellis and M. Bruni, Phys. Rev. D, 40, 1804 (1989)
G.F.R Ellis and H. van Elst, arXiv:gr-qc/9812046v5

$1+3$ covariant formalism

$1+3$ covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^{a}. Projection operator onto perpendicular 3-space with $h_{a b}=g_{a b}+u_{a} u_{b}$.
- Covariant time derivative:
- Projected derivative: $\tilde{\nabla}_{c} \psi_{a \ldots b} \equiv h_{c}^{f} h_{a}^{d} \ldots h_{b}^{e} \nabla_{f} \psi_{d \ldots e}$
G.F.R Ellis and M. Bruni, Phys. Rev. D, 40, 1804 (1989)
G.F.R Ellis and H. van Elst, arXiv:gr-qc/9812046v5

$1+3$ covariant formalism

$1+3$ covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^{a}. Projection operator onto perpendicular 3-space with $h_{a b}=g_{a b}+u_{a} u_{b}$.
- Covariant time derivative:

$$
\dot{\psi}_{a \ldots b} \equiv u^{c} \nabla_{c} \psi_{a \ldots b}
$$

- Projected derivative $\tilde{\nabla}_{c} \psi_{a \ldots b} \equiv h_{c}^{f} h_{a}^{d} \ldots h_{b}^{e} \nabla_{f} \psi_{d \ldots e}$
G.F.R Ellis and M. Bruni, Phys. Rev. D, 40, 1804 (1989)
G.F.R Ellis and H. van Elst, arXiv:gr-qc/9812046v5

$1+3$ covariant formalism

$1+3$ covariant split of spacetime by Ellis, Bruni, van Elst et.al.

- Prefered timelike vector u^{a}. Projection operator onto perpendicular 3-space with $h_{a b}=g_{a b}+u_{a} u_{b}$.
- Covariant time derivative:
$\dot{\psi}_{a . . b} \equiv u^{c} \nabla_{c} \psi_{a \ldots b}$
- Projected derivative:
$\tilde{\nabla}_{c} \psi_{a \ldots b} \equiv h_{c}^{f} h_{a}^{d} \ldots h_{b}^{e} \nabla_{f} \psi_{d \ldots e}$
G.F.R Ellis and M. Bruni, Phys. Rev. D, 40, 1804 (1989)
G.F.R Ellis and H. van Elst, arXiv:gr-qc/9812046v5

$1+3$ covariant formalism

- The covariant derivative of the 4 -velocity can be decomposed as

$$
\nabla_{a} u_{b}=-u_{a} \dot{u}_{b}+\tilde{\nabla}_{a} u_{b}=-u_{a} \dot{u}_{b}+\frac{1}{3} \theta h_{a b}+\omega_{a b}+\sigma_{a b}
$$

where $\dot{u}_{a} \equiv u^{b} \nabla_{b} u_{a}$ is the acceleration, $\theta \equiv \tilde{\nabla}_{a} u^{a}$ the expansion, $\sigma_{a b} \equiv \tilde{\nabla}_{<a} u_{b>}$ the shear and $\omega_{a b} \equiv \tilde{\nabla}_{[a} u_{b]}$ the vorticity of u^{a}.

Other used varibles: Density μ, pressure $p=p(\mu)$ (barytropic eqution of state), cosmological constant Λ, the electric part of the Weyl tensor $E_{a b} \equiv C_{a c b d} u^{c} u^{d}$ and the magnetic part of the Weyl tensor $H_{a b} \equiv \frac{1}{2} \eta_{a d e} C^{d e}{ }_{b c} u^{c}$

$1+3$ covariant formalism

- The covariant derivative of the 4 -velocity can be decomposed as

$$
\nabla_{a} u_{b}=-u_{a} \dot{u}_{b}+\tilde{\nabla}_{a} u_{b}=-u_{a} \dot{u}_{b}+\frac{1}{3} \theta h_{a b}+\omega_{a b}+\sigma_{a b}
$$

where $\dot{u}_{a} \equiv u^{b} \nabla_{b} u_{a}$ is the acceleration, $\theta \equiv \tilde{\nabla}_{a} u^{a}$ the expansion, $\sigma_{a b} \equiv \tilde{\nabla}_{<a} u_{b>}$ the shear and $\omega_{a b} \equiv \tilde{\nabla}_{[a} u_{b]}$ the vorticity of u^{a}.

- Other used varibles: Density μ, pressure $p=p(\mu)$ (barytropic eqution of state), cosmological constant Λ, the electric part of the Weyl tensor $E_{a b} \equiv C_{a c b d} u^{c} u^{d}$ and the magnetic part of the Weyl tensor $H_{a b} \equiv \frac{1}{2} \eta_{a d e} C^{d e}{ }_{b c} u^{c}$.

Propagation equations and constraints

Propagation equations and constraints for the case of perfect fluid with barytropic equation of state, $p=p(\mu)$, and zero vorticity, $\omega_{a b}=0$
Propagation equations from Ricci identities:

$$
\text { where } \sigma^{2} \equiv \frac{1}{2} \sigma^{a b} \sigma_{a b}
$$

Propagation equations and constraints

Propagation equations and constraints for the case of perfect fluid with barytropic equation of state, $p=p(\mu)$, and zero vorticity, $\omega_{a b}=0$
Propagation equations from Ricci identities:

$$
\dot{\theta}-\tilde{\nabla}_{a} \dot{u}^{a}=-\frac{1}{3} \theta^{2}+\dot{u}_{a} \dot{u}^{a}-2 \sigma^{2}-\frac{1}{2}(\mu+3 p)+\Lambda,
$$

where $\sigma^{2} \equiv \frac{1}{2} \sigma^{a b} \sigma_{a b}$.

Propagation equations and constraints

Propagation equations and constraints for the case of perfect fluid with barytropic equation of state, $p=p(\mu)$, and zero vorticity, $\omega_{a b}=0$
Propagation equations from Ricci identities:
-

$$
\dot{\theta}-\tilde{\nabla}_{a} \dot{u}^{a}=-\frac{1}{3} \theta^{2}+\dot{u}_{a} \dot{u}^{a}-2 \sigma^{2}-\frac{1}{2}(\mu+3 p)+\Lambda,
$$

where $\sigma^{2} \equiv \frac{1}{2} \sigma^{a b} \sigma_{a b}$.
-

$$
\dot{\sigma}^{<a b>}-\tilde{\nabla}^{<a} \dot{u}^{b>}=-\frac{2}{3} \theta \sigma^{a b}+\dot{u}^{<a} \dot{u}^{b>}-\sigma_{c}^{<a} \sigma^{b>c}-E^{a b}
$$

Propagation equations and constraints

Constraints from Ricci identities:

Twice contracted Bianchi identities:

Propagation equations and constraints

Constraints from Ricci identities:

-

$$
\tilde{\nabla}_{b} \sigma^{a b}-\frac{2}{3} \tilde{\nabla}^{a} \theta=0
$$

Twice contracted Bianchi identities:

Propagation equations and constraints

Constraints from Ricci identities:

-

$$
\tilde{\nabla}_{b} \sigma^{a b}-\frac{2}{3} \tilde{\nabla}^{a} \theta=0
$$

-

$$
H^{a b}=(\operatorname{curl} \sigma)^{a b} \equiv \eta^{c d<a} \tilde{\nabla}_{c} \sigma_{d}^{b>}
$$

Twice contracted Bianchi identities:

Propagation equations and constraints

Constraints from Ricci identities:

-

$$
\tilde{\nabla}_{b} \sigma^{a b}-\frac{2}{3} \tilde{\nabla}^{a} \theta=0
$$

-

$$
H^{a b}=(\operatorname{curl} \sigma)^{a b} \equiv \eta^{c d<a} \tilde{\nabla}_{c} \sigma_{d}^{b>}
$$

Twice contracted Bianchi identities:
-

$$
\dot{\mu}=-\theta(\mu+p)
$$

Propagation equations and constraints

Constraints from Ricci identities:

-

$$
\tilde{\nabla}_{b} \sigma^{a b}-\frac{2}{3} \tilde{\nabla}^{a} \theta=0
$$

-

$$
H^{a b}=(\operatorname{curl} \sigma)^{a b} \equiv \eta^{c d<a} \tilde{\nabla}_{c} \sigma_{d}^{b>}
$$

Twice contracted Bianchi identities:
-

$$
\dot{\mu}=-\theta(\mu+p)
$$

-

$$
\tilde{\nabla}_{a} p+(\mu+p) \dot{u}_{a}=0
$$

Propagation equations and constraints

Remaining Bianchi identities:

Propagation equations and constraints

Remaining Bianchi identities:
-

$$
\begin{aligned}
\dot{E}^{<a b>}-(\operatorname{curl} H)^{a b}= & -\frac{1}{2}(\mu+p) \sigma^{a b}-\theta E^{a b}+ \\
& 3 \sigma^{<a}{ }_{c} E^{b>c}+2 \eta^{c d<a} \dot{u}_{c} H^{b>}
\end{aligned}
$$

Propagation equations and constraints

Remaining Bianchi identities:
-

$$
\begin{aligned}
\dot{E}^{<a b>}-(\operatorname{curl} H)^{a b}= & -\frac{1}{2}(\mu+p) \sigma^{a b}-\theta E^{a b}+ \\
& 3 \sigma^{<a}{ }_{c} E^{b>c}+2 \eta^{c d<a} \dot{u}_{c} H^{b>}{ }_{d}
\end{aligned}
$$

$$
\dot{H}^{<a b>}+(\operatorname{curl} E)^{a b}=-\theta H^{a b}+3 \sigma_{c}^{<a} H^{b>c}-2 \eta^{c d<a} \dot{u}_{c} E^{b>}{ }_{d}
$$

Propagation equations and constraints

Remaining Bianchi identities:
-

$$
\begin{aligned}
\dot{E}^{<a b>}-(\operatorname{curl} H)^{a b}= & -\frac{1}{2}(\mu+p) \sigma^{a b}-\theta E^{a b}+ \\
& 3 \sigma^{<a}{ }_{c} E^{b>c}+2 \eta^{c d<a} \dot{u}_{c} H^{b>}{ }_{d}
\end{aligned}
$$

$$
\dot{H}^{<a b>}+(\operatorname{curl} E)^{a b}=-\theta H^{a b}+3 \sigma_{c}^{<a} H^{b>c}-2 \eta^{c d<a} \dot{u}_{c} E^{b>}{ }_{d}
$$

-

$$
\tilde{\nabla}_{b} E^{a b}-\frac{1}{3} \tilde{\nabla}^{a} \mu-\eta^{a b c} \sigma_{b d} H^{d}{ }_{c}=0
$$

Propagation equations and constraints

Remaining Bianchi identities:
-

$$
\begin{aligned}
\dot{E}^{<a b>}-(\operatorname{curl} H)^{a b}= & -\frac{1}{2}(\mu+p) \sigma^{a b}-\theta E^{a b}+ \\
& 3 \sigma^{<a}{ }_{c} E^{b>c}+2 \eta^{c d<a} \dot{u}_{c} H^{b>}{ }_{d}
\end{aligned}
$$

$$
\dot{H}^{<a b>}+(\operatorname{curl} E)^{a b}=-\theta H^{a b}+3 \sigma_{c}^{<a} H^{b>c}-2 \eta^{c d<a} \dot{u}_{c} E^{b>}{ }_{d}
$$

-

$$
\tilde{\nabla}_{b} E^{a b}-\frac{1}{3} \tilde{\nabla}^{a} \mu-\eta^{a b c} \sigma_{b d} H_{c}^{d}=0
$$

$$
\tilde{\nabla}_{b} H^{a b}+\eta^{a b c} \sigma_{b d} E_{c}^{d}=0
$$

$1+1+2$ covariant split

$1+1+2$ covariant split of spacetime by Clarkson, Barret et.al.
> - Prefered spacelike vector n^{a} with $u^{a} n_{a}=0$. Projection operator onto perpendicular 2-space with $N_{a b}=h_{a b}-n_{a} n_{b}$. - Derivative along n^{a}.

- Derivative perpendicular to n^{a} :
C. A. Clarkson \& R. Barrett, Class. Quan. Grav. 20, 3855 (2003)
C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

$1+1+2$ covariant split

$1+1+2$ covariant split of spacetime by Clarkson, Barret et.al.

- Prefered spacelike vector n^{a} with $u^{a} n_{a}=0$. Projection operator onto perpendicular 2-space with $N_{a b}=h_{a b}-n_{a} n_{b}$.
- Derivative along n^{a} :
- Derivative perpendicular to n^{a} :
C. A. Clarkson \& R. Barrett, Class. Quan. Grav. 20, 3855 (2003)
C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

$1+1+2$ covariant split

$1+1+2$ covariant split of spacetime by Clarkson, Barret et.al.

- Prefered spacelike vector n^{a} with $u^{a} n_{a}=0$. Projection operator onto perpendicular 2 -space with $N_{a b}=h_{a b}-n_{a} n_{b}$.
- Derivative along n^{a} :

$$
\hat{\psi}_{a \ldots b} \equiv n^{c} \tilde{\nabla}_{c} \psi_{a \ldots b}=n^{c} h_{c}^{f} h_{a}^{d} \ldots h_{b}^{e} \nabla_{f} \psi_{d \ldots e}
$$

- Derivative perpendicular to n^{a} :
C. A. Clarkson \& R. Barrett, Class. Quan. Grav. 20, 3855 (2003)
C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

$1+1+2$ covariant split

$1+1+2$ covariant split of spacetime by Clarkson, Barret et.al.

- Prefered spacelike vector n^{a} with $u^{a} n_{a}=0$. Projection operator onto perpendicular 2 -space with $N_{a b}=h_{a b}-n_{a} n_{b}$.
- Derivative along n^{a} :

$$
\hat{\psi}_{a \ldots b} \equiv n^{c} \tilde{\nabla}_{c} \psi_{a \ldots b}=n^{c} h_{c}^{f} h_{a}^{d} \ldots h_{b}^{e} \nabla_{f} \psi_{d \ldots e}
$$

- Derivative perpendicular to n^{a} :

$$
\delta_{c} \psi_{a \ldots b} \equiv N_{c}^{f} N_{a}^{d} \ldots N_{b}^{e} \tilde{\nabla}_{f} \psi_{d \ldots e}
$$

C. A. Clarkson \& R. Barrett, Class. Quan. Grav. 20, 3855 (2003)
C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)
$1+3$ and $1+1+2$ covariant formalisms
Kantowski-Sachs
Density perturbations
Summary and outlook

$1+1+2$ covariant split

- Decomposition of derivatives of n^{a} :

- where

M. Bradley, P.K.S. Dunsby and M. Forsberg

$1+1+2$ covariant split

- Decomposition of derivatives of n^{a} :

$$
\begin{aligned}
\tilde{\nabla}_{a} n_{b} & =n_{a} a_{b}+\frac{1}{2} \phi N_{a b}+\xi \epsilon_{a b}+\zeta_{a b} \\
\dot{n}_{a} & =\mathcal{A} u_{a}+\alpha_{a}
\end{aligned}
$$

- where

$1+1+2$ covariant split

- Decomposition of derivatives of n^{a} :

$$
\begin{aligned}
\tilde{\nabla}_{a} n_{b} & =n_{a} a_{b}+\frac{1}{2} \phi N_{a b}+\xi \epsilon_{a b}+\zeta_{a b} \\
\dot{n}_{a} & =\mathcal{A} u_{a}+\alpha_{a}
\end{aligned}
$$

- where

$$
\begin{aligned}
a_{a} & \equiv \hat{n}_{a}, \quad \phi \equiv \delta_{a} n^{a}, \quad \xi \equiv \frac{1}{2} \epsilon^{a b} \delta_{a} n_{b}, \quad \zeta_{a b} \equiv \delta_{\{a} n_{b\}}, \\
\mathcal{A} & \equiv n^{a} \dot{u}_{a}, \quad \alpha_{a} \equiv \dot{n}_{\bar{a}}, \quad \epsilon_{a b} \equiv \eta_{a b c} n^{c} \equiv u^{d} \eta_{d a b c} n^{c} .
\end{aligned}
$$

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ.

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_{2}$. Locally Rotationally Symmetric (LRS).

- The expansion and shear are given by

- Can undergo bounce.

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ.

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_{2}$. Locally Rotationally Symmetric (LRS).
- The expansion and shear are given by

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ.

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_{2}$. Locally Rotationally Symmetric (LRS).
-

$$
d s^{2}=-d t^{2}+a_{1}^{2}(t) d z^{2}+a_{2}^{2}(t)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

- The expansion and shear are given by

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ.

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_{2}$. Locally Rotationally Symmetric (LRS).
-

$$
d s^{2}=-d t^{2}+a_{1}^{2}(t) d z^{2}+a_{2}^{2}(t)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

- The expansion and shear are given by

$$
\begin{aligned}
\theta & =\frac{\dot{a}_{1}}{a_{1}}+2 \frac{\dot{a}_{2}}{a_{2}} \\
\Sigma & \equiv \sigma_{11}=-2 \sigma_{22}=-2 \sigma_{33}=\frac{2}{3}\left(\frac{\dot{a}_{1}}{a_{1}}-\frac{\dot{a}_{2}}{a_{2}}\right)
\end{aligned}
$$

Kantowski-Sachs

Kantowski-Sachs cosmologies with cosmological constant Λ.

- 4-dimensional isometry group acting multiply transitive on 3-spaces with topology $R \times S_{2}$. Locally Rotationally Symmetric (LRS).
-

$$
d s^{2}=-d t^{2}+a_{1}^{2}(t) d z^{2}+a_{2}^{2}(t)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

- The expansion and shear are given by

$$
\begin{aligned}
\theta & =\frac{\dot{a}_{1}}{a_{1}}+2 \frac{\dot{a}_{2}}{a_{2}} \\
\Sigma & \equiv \sigma_{11}=-2 \sigma_{22}=-2 \sigma_{33}=\frac{2}{3}\left(\frac{\dot{a}_{1}}{a_{1}}-\frac{\dot{a}_{2}}{a_{2}}\right)
\end{aligned}
$$

- Can undergo bounce.

Vacuum solutions

All vacuum Kantowski-Sachs can be found

Vacuum solutions

All vacuum Kantowski-Sachs can be found

- The equilibrium points $\pm X$:

$$
d s^{2}=-d t^{2}+e^{ \pm 2 \sqrt{\Lambda} t} d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) .
$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, 60, 023502 (1999)

where $f(t)=a_{0} \cosh (\sqrt{\Lambda} t)$ or $f(t)=a_{0} \sinh (\sqrt{\Lambda} t)$. The first
experiences a bounce in the z-direction

- Schwarzschild-de Sitter:

where $A \equiv\left(\frac{2 M}{T}-1+\frac{\Lambda}{3} T^{2}\right)$

Vacuum solutions

All vacuum Kantowski-Sachs can be found

- The equilibrium points $\pm X$:

$$
d s^{2}=-d t^{2}+e^{ \pm 2 \sqrt{\Lambda} t} d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, 60, 023502 (1999)
-

$$
d s^{2}=-d t^{2}+f^{2}(t) d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where $f(t)=a_{0} \cosh (\sqrt{\Lambda} t)$ or $f(t)=a_{0} \sinh (\sqrt{\Lambda} t)$. The first experiences a bounce in the z-direction.

\square

Vacuum solutions

All vacuum Kantowski-Sachs can be found

- The equilibrium points $\pm X$:

$$
d s^{2}=-d t^{2}+e^{ \pm 2 \sqrt{\Lambda} t} d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

M. Goliath and G.F.R. Ellis, Phys.Rev. D, 60, 023502 (1999)
-

$$
d s^{2}=-d t^{2}+f^{2}(t) d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where $f(t)=a_{0} \cosh (\sqrt{\Lambda} t)$ or $f(t)=a_{0} \sinh (\sqrt{\Lambda} t)$. The first experiences a bounce in the z-direction.

- Schwarzschild-de Sitter:

$$
d s^{2}=-A^{-1} d T^{2}+A d z^{2}+T^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right),
$$

where $A \equiv\left(\frac{2 M}{T}-1+\frac{\Lambda}{3} T^{2}\right)$.

Density perturbations

Purpose:

To study the time-development of first order density perturbations on Kantowski-Sachs backgrounds and in particular on those undergoing bounces, i.e. those where expansion changes sign in one or several directions.

Inhomogeneity variables

As inhomogeneity variable we use

- The density gradient: $\mathcal{D}_{a} \equiv \frac{a \tilde{\nabla}_{a} \mu}{\mu}$.

Here a is the average scale factor, defined from $\theta=3 \frac{\dot{a}}{a}$.

- The density fluctuations $\frac{\delta \mu}{\mu}$ on a length scale / are related to the quantity \mathcal{D}_{a} through $\frac{\delta \mu}{\mu} \sim\left(\mathcal{D}_{a} \mathcal{D}^{a}\right)^{1 / 2} l / a=\left(\mathcal{D}_{a} \mathcal{D}^{a}\right)^{1 / 2} \|_{0}$, where $I_{0}=I / a$ is the comoving dimensionless length scale.
- To close the system, the following auxillary quantities will by used $\mathcal{Z}_{a} \equiv a \tilde{\nabla}_{a} \theta, \quad \mathcal{T}_{a} \equiv a \tilde{\nabla}_{a} \sigma^{2}, \quad \mathcal{S}_{a} \equiv a \tilde{\nabla}_{a}\left(\sigma^{a b} S_{a b}\right)$ where $S_{a b}$ is the traceless part of the 3-Ricci tensor (can be written in a covariant way when $\omega_{a b}=0$).

Inhomogeneity variables

As inhomogeneity variable we use

- The density gradient: $\mathcal{D}_{a} \equiv \frac{a \tilde{\nabla}_{a} \mu}{\mu}$.

Here a is the average scale factor, defined from $\theta=3 \frac{a}{a}$.

- The density fluctuations $\frac{\delta \mu}{\mu}$ on a length scale $/$ are related to the quantity \mathcal{D}_{a} through $\frac{\delta \mu}{\mu} \sim\left(\mathcal{D}_{a} \mathcal{D}^{a}\right)^{1 / 2} I / a=\left(\mathcal{D}_{a} \mathcal{D}^{a}\right)^{1 / 2} /{ }_{0}$, where $I_{0}=I / a$ is the comoving dimensionless length scale.
- To close the system, the following auxillary quantities will by

written in a covariant way when $\omega_{a b}=0$).

Inhomogeneity variables

As inhomogeneity variable we use

- The density gradient: $\mathcal{D}_{a} \equiv \frac{a \tilde{\nabla}_{a} \mu}{\mu}$.

Here a is the average scale factor, defined from $\theta=3 \frac{a}{a}$.

- The density fluctuations $\frac{\delta \mu}{\mu}$ on a length scale $/$ are related to the quantity \mathcal{D}_{a} through $\frac{\delta \mu}{\mu} \sim\left(\mathcal{D}_{a} \mathcal{D}^{a}\right)^{1 / 2} / / a=\left(\mathcal{D}_{a} \mathcal{D}^{a}\right)^{1 / 2} / 0$, where $I_{0}=I / a$ is the comoving dimensionless length scale.
- To close the system, the following auxillary quantities will by used $\mathcal{Z}_{a} \equiv a \tilde{\nabla}_{a} \theta, \quad \mathcal{T}_{a} \equiv a \tilde{\nabla}_{a} \sigma^{2}, \quad \mathcal{S}_{a} \equiv a \tilde{\nabla}_{a}\left(\sigma^{a b} S_{a b}\right)$. where $S_{a b}$ is the traceless part of the 3-Ricci tensor (can be written in a covariant way when $\omega_{a b}=0$).

First order equations

The propagation equations for inhomogeneity variables are obtained by taking the gradients of the original propagation equations. The following commutator is then used:

First order equations

The propagation equations for inhomogeneity variables are obtained by taking the gradients of the original propagation equations. The following commutator is then used:
-

$$
\begin{aligned}
& \qquad \tilde{\nabla}_{a}(\dot{f})-\left(\tilde{\nabla}_{a} f\right)=-\dot{u}_{a} \dot{f}+\frac{1}{3} \theta \tilde{\nabla}_{a} f+\sigma_{a}{ }^{c} \tilde{\nabla}_{c} f \\
& \text { The equations are then projected along the prefered direction } \\
& n^{a} \text { and onto the perpendicular 2-space with } N_{a b} \text { as } \\
& \qquad D \equiv D_{a} n^{a}, Z \equiv Z_{a} n^{a}, T \equiv T_{a} n^{a}, S \equiv S_{a} n^{a} \\
& \text { and } \\
& D_{\bar{a}} \equiv D_{b} N^{a b}, Z_{\bar{a}} \equiv Z_{b} N^{a b}, T_{\bar{a}} \equiv T_{b} N^{a b}, S_{\bar{a}} \equiv S_{b} N^{a b}
\end{aligned}
$$

First order equations

The propagation equations for inhomogeneity variables are obtained by taking the gradients of the original propagation equations. The following commutator is then used:

$$
\tilde{\nabla}_{a}(\dot{f})-\left(\tilde{\nabla}_{a} f\right)=-\dot{u}_{a} \dot{f}+\frac{1}{3} \theta \tilde{\nabla}_{a} f+\sigma_{a}{ }^{c} \tilde{\nabla}_{c} f .
$$

- The equations are then projected along the prefered direction n^{a} and onto the perpendicular 2-space with $N_{a b}$ as

$$
\mathcal{D} \equiv \mathcal{D}_{a} n^{a}, \mathcal{Z} \equiv \mathcal{Z}_{a} n^{a}, \mathcal{T} \equiv \mathcal{T}_{a} n^{a}, \mathcal{S} \equiv \mathcal{S}_{a} n^{a}
$$

and

$$
\mathcal{D}_{\bar{a}} \equiv \mathcal{D}_{b} N^{a b}, \mathcal{Z}_{\bar{a}} \equiv \mathcal{Z}_{b} N^{a b}, \mathcal{T}_{\bar{a}} \equiv \mathcal{T}_{b} N^{a b}, \mathcal{S}_{\bar{a}} \equiv \mathcal{S}_{b} N^{a b}
$$

First order equations

- To get spatial derivatives in the form of two Lacplace-like operators $\delta^{2} \equiv \delta_{a} \delta^{a}$ and $\hat{\Delta} \equiv n^{a} \tilde{\nabla}_{a} n^{b} \tilde{\nabla}_{b}$ it is suitable to act on the two systems with $n^{a} \tilde{\nabla}_{a}$ and δ_{a} respectively.
- New variables are then defined as

$$
\hat{\mathcal{D}} \equiv n^{a} \tilde{\nabla}_{a} \mathcal{D} \quad \text { and } \quad \mathcal{D} \equiv \delta^{a} \mathcal{D}_{\bar{a}}
$$

and similarly for the other variables.

- To remove some singular terms we then redefine \hat{T} and T according to

First order equations

- To get spatial derivatives in the form of two Lacplace-like operators $\delta^{2} \equiv \delta_{a} \delta^{a}$ and $\hat{\Delta} \equiv n^{a} \tilde{\nabla}_{a} n^{b} \tilde{\nabla}_{b}$ it is suitable to act on the two systems with $n^{a} \tilde{\nabla}_{a}$ and δ_{a} respectively.
- New variables are then defined as

$$
\hat{\mathcal{D}} \equiv n^{a} \tilde{\nabla}_{a} \mathcal{D} \quad \text { and } \quad \mathcal{D} \equiv \delta^{a} \mathcal{D}_{\bar{a}}
$$

and similarly for the other variables.
To remove some singular terms we then redefine $\hat{\mathcal{T}}$ and \mathcal{T} according to

First order equations

- To get spatial derivatives in the form of two Lacplace-like operators $\delta^{2} \equiv \delta_{a} \delta^{a}$ and $\hat{\Delta} \equiv n^{a} \tilde{\nabla}_{a} n^{b} \tilde{\nabla}_{b}$ it is suitable to act on the two systems with $n^{a} \tilde{\nabla}_{a}$ and δ_{a} respectively.
- New variables are then defined as

$$
\hat{\mathcal{D}} \equiv n^{a} \tilde{\nabla}_{a} \mathcal{D} \quad \text { and } \quad \mathcal{D} \equiv \delta^{a} \mathcal{D}_{\bar{a}}
$$

and similarly for the other variables.

- To remove some singular terms we then redefine $\hat{\mathcal{T}}$ and \mathcal{T} according to

$$
\hat{\mathcal{T}}_{\text {old }}=\Sigma^{2} \hat{\mathcal{T}}_{\text {new }}+\frac{\Sigma}{\tilde{S}} \hat{\mathcal{S}} \quad \text { and } \quad \mathcal{T}_{\text {old }}=\Sigma^{2} \mathcal{T}_{\text {new }}+\frac{\Sigma}{\tilde{S}} \phi
$$

First order equations

First order system for hat variables

$$
\begin{aligned}
\dot{\hat{\mathcal{D}}}= & {\left[\theta\left(\frac{p}{\mu}-\frac{1}{3}\right)-2 \Sigma\right] \hat{\mathcal{D}}-\left(1+\frac{p}{\mu}\right) \hat{\mathcal{Z}} } \\
\dot{\hat{\mathcal{Z}}}= & -(\theta+2 \Sigma) \hat{\mathcal{Z}}-2 \Sigma^{2} \hat{\mathcal{T}}+\left[-\frac{1}{2} \mu+\frac{3}{2} \frac{\mu p^{\prime}}{\mu+p}\left(\tilde{S}+\frac{3}{2} \Sigma^{2}\right)\right] \hat{\mathcal{D}}- \\
& -2 \frac{\Sigma}{\tilde{S}} \hat{\mathcal{S}}-\frac{\mu p^{\prime}}{\mu+p} \hat{\Delta}[\hat{\mathcal{D}}+\mathcal{D}]
\end{aligned}
$$

where

$$
\tilde{S}=-\frac{2}{3} \mu-\frac{2}{3} \Lambda-\frac{1}{2} \Sigma^{2}+\frac{2}{9} \theta^{2}=-\frac{2}{3} K<0
$$

to zeroth order and

First order equations

$$
\begin{aligned}
\dot{\hat{\mathcal{T}}}= & -\left(\frac{1}{3} \theta+2 \Sigma+\frac{\Sigma^{3}}{\tilde{S}}\right) \hat{\mathcal{T}}-\left(\frac{\Sigma^{2}}{\tilde{S}^{2}}+\frac{1}{\tilde{S}}\right) \hat{\mathcal{S}} \\
& -\left[\frac{\Sigma \mu}{\tilde{S}}+\frac{\mu p^{\prime}}{\mu+p}\left(\theta-\frac{3}{2} \Sigma\right)\right] \hat{\mathcal{D}}+\left(1+\frac{2}{3} \frac{\Sigma \theta}{\tilde{S}}\right) \hat{\mathcal{Z}} \\
& +\frac{\mu p^{\prime}}{\mu+p} \frac{1}{\tilde{S}}\left[\left(\frac{1}{2} \Sigma-\frac{1}{3} \theta\right) \hat{\Delta} \hat{\mathcal{D}}-\left(\Sigma-\frac{1}{6} \theta\right) \hat{\Delta}(\mathcal{D})\right] \\
& -\frac{1}{\tilde{S}} \hat{\Delta}\left(\hat{\mathcal{Z}}-\frac{1}{2} \mathcal{Z}\right)+\frac{\Sigma}{\tilde{S}} \hat{\Delta}(\hat{\mathcal{T}}+\mathcal{T})+\frac{1}{\tilde{S}^{2}} \hat{\Delta}(\hat{\mathcal{S}}+\mathcal{S})
\end{aligned}
$$

First order equations

$$
\begin{aligned}
& \dot{\hat{\mathcal{S}}}=\left[\mu \Sigma^{2}+\frac{\mu p^{\prime}}{\mu+p} \tilde{S}\left(\frac{5}{2} \theta \Sigma+\frac{3}{2} \tilde{S}-\frac{3}{2} \Sigma^{2}\right)\right] \hat{\mathcal{D}}-\left(\frac{2}{3} \theta \Sigma+\frac{5}{2} \tilde{S}\right) \Sigma \hat{\mathcal{Z}} \\
& +\left(\Sigma^{4}+2 \tilde{S}^{2}\right) \hat{\mathcal{T}}+\left(\frac{\Sigma^{3}}{\tilde{S}}-2 \theta\right) \hat{\mathcal{S}}+\Sigma \hat{\Delta} \hat{\mathcal{Z}}-\frac{1}{2} \Sigma \hat{\Delta}(\mathcal{X})-\Sigma^{2} \hat{\Delta} \hat{\mathcal{T}}+ \\
& \frac{\mu p^{\prime}}{\mu+p}\left[\left(\frac{1}{3} \theta \Sigma-\tilde{S}-\frac{1}{2} \Sigma^{2}\right) \hat{\Delta} \hat{\mathcal{D}}+\frac{1}{2}\left(\tilde{S}-\frac{1}{3} \theta \Sigma+2 \Sigma^{2}\right) \hat{\Delta}(\mathscr{D})\right] \\
& -\frac{\Sigma}{\tilde{S}} \hat{\Delta}(\hat{\mathcal{S}}+\mathcal{S})-\Sigma^{2} \hat{\Delta}(\mathcal{T})
\end{aligned}
$$

First order equations

First order system for slashed variables

$$
\begin{aligned}
\dot{\mathcal{D}}= & {\left[\theta\left(\frac{p}{\mu}-\frac{1}{3}\right)+\Sigma\right] \mathscr{D}-\left(1+\frac{p}{\mu}\right) \not \mathscr{Z} } \\
\dot{\mathcal{Z}}= & (\Sigma-\theta) \mathcal{Z}-2 \Sigma^{2} \mathcal{T}+\left[-\frac{1}{2} \mu+\frac{3}{2} \frac{\mu p^{\prime}}{\mu+p}\left(\tilde{S}+\frac{3}{2} \Sigma^{2}\right)\right] \mathscr{D}- \\
& -2 \frac{\Sigma}{\tilde{S}} \mathcal{S}-\frac{\mu p^{\prime}}{\mu+p} \delta^{2}[\hat{\mathcal{D}}+\mathscr{D}]
\end{aligned}
$$

First order equations

$$
\begin{aligned}
\dot{\mathcal{T}}= & -\left(\frac{1}{3} \theta-\Sigma+\frac{\Sigma^{3}}{\tilde{S}}\right) \mathcal{T}-\left(\frac{\Sigma^{2}}{\tilde{S}^{2}}+\frac{1}{\tilde{S}}\right) \mathcal{S}- \\
& {\left[\frac{\Sigma \mu}{\tilde{S}}+\frac{\mu p^{\prime}}{\mu+p}\left(\theta-\frac{3}{2} \Sigma\right)\right] \mathscr{D}+\left(1+\frac{2 \Sigma \theta}{3} \tilde{\tilde{S}}\right) \not \mathcal{Z} } \\
& +\frac{\mu p^{\prime}}{\mu+p} \frac{1}{\tilde{S}}\left[\left(\frac{1}{2} \Sigma-\frac{1}{3} \theta\right) \delta^{2} \hat{\mathcal{D}}-\left(\Sigma-\frac{1}{6} \theta\right) \delta^{2}(\mathcal{D})\right] \\
& -\frac{1}{\tilde{S}} \delta^{2}\left(\hat{\mathcal{Z}}-\frac{1}{2} \mathcal{Z}\right)+\frac{\Sigma}{\tilde{S}} \delta^{2}(\hat{\mathcal{T}}+\mathcal{T})+\frac{1}{\tilde{S}^{2}} \delta^{2}(\hat{\mathcal{S}}+\mathcal{F})
\end{aligned}
$$

First order equations

$$
\begin{aligned}
& \dot{\phi}=\left[\mu \Sigma^{2}+\frac{\mu p^{\prime}}{\mu+p} \tilde{S}\left(\frac{5}{2} \theta \Sigma+\frac{3}{2} \tilde{S}-\frac{3}{2} \Sigma^{2}\right)\right] \not D-\left(\frac{2}{3} \theta \Sigma+\frac{5}{2} \tilde{S}\right) \Sigma \not \subset \\
& +\left(\Sigma^{4}+2 \tilde{S}^{2}\right) \mathcal{T}+\left(\frac{\Sigma^{3}}{\tilde{S}}-2 \theta+3 \Sigma\right) \mathcal{S}+\Sigma \delta^{2}\left(\hat{\mathcal{Z}}-\frac{1}{2} \not \mathcal{Z}\right)+ \\
& \frac{\mu p^{\prime}}{\mu+p}\left[\left(\frac{1}{3} \theta \Sigma-\frac{1}{2} \Sigma^{2}-\tilde{S}\right) \delta^{2} \hat{\mathcal{D}}+\frac{1}{2}\left(\tilde{S}-\frac{1}{3} \theta \Sigma+2 \Sigma^{2}\right) \delta^{2}(\mathcal{D})\right] \\
& -\frac{\Sigma_{\tilde{S}}}{} \delta^{2}(\hat{\mathcal{S}}+\mathcal{S})-\Sigma^{2} \delta^{2}(\hat{\mathcal{T}}+\mathcal{T}) .
\end{aligned}
$$

Harmonic decomposition

Harmonic decomposition in terms of comoving wavenumbers $k_{\|}$ and k_{\perp}

$$
\Psi=\sum_{k_{\|}, k_{\perp}} \Psi_{k_{\|} k_{\perp}} P_{k_{\|}} Q_{k_{\perp}}
$$

Can be chosen as $P_{k_{\|}}=e^{i k_{\|} z}$ where z in 1-direction.

Harmonic decomposition

Harmonic decomposition in terms of comoving wavenumbers $k_{\|}$ and k_{\perp}

$$
\Psi=\sum_{k_{\|}, k_{\perp}} \Psi_{k_{\|} k_{\perp}} P_{k_{\|}} Q_{k_{\perp}}
$$

-

$$
\hat{\Delta} P_{k_{\|}}=-\frac{k_{\|}^{2}}{a_{1}^{2}} P_{k_{\|}}, \quad \delta_{a} P_{k_{\|}}=\dot{P}_{k_{\|}}=0
$$

Can be chosen as $P_{k_{\|}}=e^{i k_{\| \mid} z}$ where z in 1-direction.

C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

Harmonic decomposition

Harmonic decomposition in terms of comoving wavenumbers $k_{\|}$ and k_{\perp}

$$
\Psi=\sum_{k_{\|}, k_{\perp}} \Psi_{k_{\|} k_{\perp}} P_{k_{\|}} Q_{k_{\perp}}
$$

-

$$
\hat{\Delta} P_{k_{\|}}=-\frac{k_{\|}^{2}}{a_{1}^{2}} P_{k_{\|}}, \quad \delta_{a} P_{k_{\|}}=\dot{P}_{k_{\|}}=0
$$

Can be chosen as $P_{k_{\|}}=e^{i k_{\| \mid} z}$ where z in 1-direction.

$$
\delta^{2} Q_{\perp}=-\frac{k_{\perp}^{2}}{a_{2}^{2}} Q_{\perp}, \quad \hat{Q}_{\perp}=\dot{Q}_{\perp}=0
$$

C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)

Analytical solutions

Exact solutions to the perturbed equations can be found around some of the vacuum solutions for the limit $k_{\|}=k_{\perp}=0$ (i.e. infinite wavelenght). Could approximate the growth/decay of long wave density perturbations for the case $p \ll \mu \ll \Lambda$.

Analytical solutions

Exact solutions to the perturbed equations can be found around some of the vacuum solutions for the limit $k_{\|}=k_{\perp}=0$ (i.e. infinite wavelenght). Could approximate the growth/decay of long wave density perturbations for the case $p \ll \mu \ll \Lambda$.

- Perturbations around vacuum bounce solution:

$$
d s^{2}=-d t^{2}+a_{0}^{2} \cosh ^{2}(\sqrt{\Lambda} t) d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right):
$$

Analytical solutions

Exact solutions to the perturbed equations can be found around some of the vacuum solutions for the limit $k_{\|}=k_{\perp}=0$ (i.e. infinite wavelenght). Could approximate the growth/decay of long wave density perturbations for the case $p \ll \mu \ll \Lambda$.

- Perturbations around vacuum bounce solution:

$$
\begin{aligned}
& d s^{2}=-d t^{2}+a_{0}^{2} \cosh ^{2}(\sqrt{\Lambda} t) d z^{2}+\frac{1}{\Lambda}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right): \\
& \hat{\mathcal{D}}=\left(A_{1}+A_{2} \theta\right)\left(\Lambda-\theta^{2}\right)^{5 / 6}+A_{3} \theta\left(\Lambda-\theta^{2}\right)^{1 / 3}+ \\
& A_{4}\left(\Lambda-\theta^{2}\right)^{5 / 6} \times \\
& \left(\frac{1}{2} \ln \left(1-\frac{\theta^{2}}{\Lambda}\right)-\frac{\theta}{4 \sqrt{\Lambda}} \ln \left(\frac{\sqrt{\Lambda}+\theta}{\sqrt{\Lambda}-\theta}\right)+\frac{\theta}{\sqrt{\Lambda-\theta^{2}}} \arcsin \left(\frac{\theta}{\sqrt{\Lambda}}\right)\right) \text { and } \\
& \mathcal{D}=\left(\frac{a_{1}}{a_{2}}\right)^{2} \hat{\mathcal{D}}=\hat{\mathcal{D}} /\left(\Lambda-\theta^{2}\right), \text { where } \theta=\sqrt{\Lambda} \tanh (\sqrt{\Lambda} t) .
\end{aligned}
$$

$\hat{\mathcal{D}}$-modes

D-modes

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p=\frac{1}{3} \mu$
- The anisotropy direction n_{a} starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\|} \rightarrow \sqrt{\Lambda / 3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda / 3}$, so that $\theta \rightarrow \sqrt{3 \wedge}$.
- It starts close to the critical point _ X, passes through a bounce, is close to the critical point ${ }_{+} X$ for an intermediate period and then eventually approaches de Sitter.

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p=\frac{1}{3} \mu$.
- The anisotropy direction n_{a} starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\|} \rightarrow \sqrt{\Lambda / 3}$
- In the nernendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda / 3}$, so that $\theta \rightarrow \sqrt{3 \Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point ${ }_{+} X$ for an intermediate period and then eventually approaches de Sitter

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p=\frac{1}{3} \mu$.
- The anisotropy direction n_{a} starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\|} \rightarrow \sqrt{\Lambda / 3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda / 3}$, so that $\theta \rightarrow \sqrt{3 \Lambda}$.
- It starts close to the critical point _ X, passes through a bounce, is close to the critical point ${ }_{+} X$ for an intermediate period and then eventually approaches de Sitter

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p=\frac{1}{3} \mu$.
- The anisotropy direction n_{a} starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\|} \rightarrow \sqrt{\Lambda / 3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda / 3}$, so that $\theta \rightarrow \sqrt{3 \Lambda}$.
- It starts close to the critical point _X, passes through a bounce, is close to the critical point $+X$ for an intermediate period and then eventually approaches de Sitter.

Numerical solutions

Example of a numerical solution. Properties of background solution:

- Radiation $p=\frac{1}{3} \mu$.
- The anisotropy direction n_{a} starts contracting, goes through a bounce and then expands forever. Asymptotically $\theta_{\|} \rightarrow \sqrt{\Lambda / 3}$
- In the perpendicular directions the initial expansion is small and becomes almost negligible for some time before it starts expanding again. Asymptotically $\theta_{\perp} \rightarrow \sqrt{\Lambda / 3}$, so that $\theta \rightarrow \sqrt{3 \Lambda}$.
- It starts close to the critical point $\quad X$, passes through a bounce, is close to the critical point ${ }_{+} X$ for an intermediate period and then eventually approaches de Sitter.
$1+3$ and $1+1+2$ covariant formalisms
Kantowski-Sachs
Density perturbations
Summary and outlook

Inhomogeneity variables First order equations Harmonic decomposition Numerical solutions

Background quantities: $\mathrm{BI}=1.3333$

Numerical solutions

The growth of the density perturbations $\hat{\mathcal{D}}$ and \mathscr{D} for the wave numbers $k_{\|} / a_{10}=k_{\perp} / a_{20}=0,1,5$ and 20. Initially, at $t_{0}=1$, $\hat{\mathcal{D}}=\mathscr{D}=0.001$.
$1+3$ and $1+1+2$ covariant formalisms
Kantowski-Sachs
Density perturbations
Summary and outlook

Inhomogeneity variables
First order equations
Harmonic decomposition
Numerical solutions

$$
4 \square \vee 4 \text { 司 } 1 \text { 引 }
$$

M. Bradley, P.K.S. Dunsby and M. Forsberg

Density growth in Kantowski-Sachs cosmologies

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu \ll \wedge$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu \ll \Lambda$
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order nerturbations

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu \ll \Lambda$
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order nerturbations

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu \ll \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order nerturbations

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu \ll \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

Summary and outlook

- Closed system for scalar perturbations on the background of Kantowski-Sachs cosmologies with cosmological constant obtained.
- The growth or decay of density gradients have been studied numerically for different wavelenghts and initial perturbations on a number of backgrounds.
- Can be solved analytically for some vacuum backgrounds in the long wavelength limit. Agree well with some numerical dust solutions with $\mu \ll \Lambda$.
- Future work: Tensor perturbations, including generation and propagation of gravitational waves.
- Second order perturbations.

In memory of Brian Edgar

