Models of Relativistic Neutron Stars with surface *Crust*

With applications to giant glitches of Vela Pulsar

Jose Luis Blázquez Salcedo Luis Manuel González Romero Francisco Navarro Lérida

Universidad Complutense de Madrid

Models of Relativistic Neutron Stars with surface *Crust*

With applications to giant glitches of Vela Pulsar

- 1. Introduction
- 2. Construction of Models of Neutron Star with Surface Crust
- 3. Study of the Properties of the Model using Realistic Equations of State
- 4. Application to Giant Glitches of the Vela Pulsar
- 5. Conclusions

1. Introduction

• Neutron stars

High density 10^{14} g cm⁻³ Compact objects 1.44 M_{\odot}, 10 Km

General Relativity

- Pulsars: Rotating neutron star
 - Gradual spin down

 (loss of angular
 momentum in radiation)
 - Sudden spin jumps Glitches
- Vela pulsar giant glitches: relative period variation of 10⁻⁶

• Related to the layer structure of neutron stars:

F. Weber (SDSU, 2010)

- The crust rupture releases energy: 10⁴¹ – 10⁴³ erg → Heating of the inner crust (10⁶ K) (Hirano et al. 1997; Van Riper, Epstein & Miler 1997)
- Variation of the equation of state in the inner crust region. Increase in the core-crust transition pressure order 10⁻¹⁰
- Most of the crustal matter is in the inner crust (Pethick, Lorenz & Ravenhall 1995)
- Dynamical properties depend strongly on the transition pressure (Lattimer & Prakash 2001, Cheng, Yuan & Zhang 2002)

We can approximate the crust to a surface energy layer

In this model, the core-crust transition pressure arise as an essential parameter of a configuration

- Neutron Star in permanent rigid rotation (constant angular velocity Ω) Stationary space-time with axial symmetry
- For typical second and millisecond pulsars $\Omega < \sqrt{\frac{M}{a^3}} \equiv \Omega_s$
- Hartle-Thorne perturbative solution (Hartle 1967; Hartle & Thorne 1968) up to second order in Ω:

$$ds^{2} = -\underline{e^{2\psi(r)}}(1+2\underline{h(r,\theta)})dt^{2} + \underline{e^{2\lambda(r)}}(1+\frac{2\underline{m(r,\theta)}}{r-2\underline{M(r)}})dr^{2} + \frac{r^{2}(1+2\underline{k(r,\theta)})\left[d\theta^{2} - \sin^{2}\theta(d\varphi - \underline{\omega(r,\theta)}dt)^{2}\right]}{0rder zero \qquad \text{Order }\Omega \qquad \text{Order }\Omega^{2}$$

• Matter in the core of the star

perfect fluid with realistic equation of state

$$p = p(\rho)$$

• In the surface of the star (R=a) we introduce a surface layer of energy:

 $S_c^{\mu\nu}(a) = -\rho_c(\theta)u_c^{\mu}u_c^{\nu}$

$$\rho_{c}(\theta) = \varepsilon + \delta \varepsilon(\theta) = \varepsilon + \delta \varepsilon_{0} + \delta \varepsilon_{2} P_{2}(\theta)$$

Zero order surface energy density Ω^2 order surface energy density

Angular velocity Ω_c

• Matching between the interior and exterior solutions:

Border of the star Σ (R=a) \rightarrow usual junction conditions (intrinsic formulation)

1) Continuity of the first fundamental form:

$$\Delta[h_{\mu\nu}(a)] = h_{\mu\nu} |_{\Sigma_{ext}} - h_{\mu\nu} |_{\Sigma_{int}} = 0$$

2) Discontinuity in the second fundamental form:

$$(n^{\rho}n_{\rho})(\Delta[\chi^{\mu}_{v}(a)] - \Delta[\chi^{\rho}_{\rho}(a)]\delta^{\mu}_{v}) = 8\pi S^{\mu}_{cv}$$

• Expansion up to second order in Ω of these two conditions :

✤ Zero order

• Mass function condition:

✤ Zero order

• Transtition pressure condition:

$$\frac{M_{ext}}{a^2\sqrt{1-\frac{2M_{ext}}{a}}} - \frac{M_{int}+4\pi a^2 p_{int}}{a^2\sqrt{1-\frac{2M_{int}}{a}}} = 4\pi\varepsilon$$

Zero order surface energy density

Discontinuity of the pressure in the surface of the star.

We interpret this pressure as the core-crust transtition pressure. Determines the radius of the neutron star with surface crust configuration.

• $\underline{\Omega \text{ order}}$

• Continuity in the inertial dragging

$$\omega(a)_{ext} = \omega(a)_{int} \equiv \omega(a)$$

 \circ $\;$ Expression for total angular momentum:

• $\underline{\Omega^2 \text{ order}}$

- Continuity in the mean radius and surface eccentricity
- Conditions for second order mass perturbation and surface mass distribution
- Determination of the second order surface energy density
- Condition for the angular velocity of the surface crust:

$$\Omega_{c} = \left\{ \begin{array}{c} \Omega \\ 2\omega(a) - \Omega \end{array} \right\} \longrightarrow \text{Core-crust co-rotating configuration} \\ \bullet \text{ Core-crust contra-rotating configuration} \\ \bullet \text{$$

3. Study of the Properties of the Model using Realistic Equations of State

- Model of neutron star with surface crust:
 - For a fixed Equation of State:
 - \circ Central density ρ_c
 - \circ Core angular velocity $\Omega\,$ -
 - The Equation of State is fixed choosing:
 - Core of the star $p=p(\rho)$
 - Transition pressure p_{int}
- Equations of state used in this work
 - I. Numerical equation of stateHigh density (Glendening) + Low density (BPS)
 - II. Analytical fit to SLy Equation of StateP. Haensel and A. Y. Potekhin

<u>Effect of the surface density over</u> <u>configurations with different central densities</u>

- Fixed crust mass to 10% of the core mass
 - Mass shedding limit case

We change the central density of the star

<u>Effect of the surface density over</u> <u>configurations with different central densities</u>

<u>Effect of the variation of the transition pressure</u> <u>in neutron stars with fixed central density</u>

- Fixed central density $\rho_c = 1.2 \cdot 10^{15} \text{ g cm}^{-3}$
 - Mass shedding limit case

We change the transition pressure of the star

<u>Effect of the variation of the transition pressure</u> <u>in neutron stars with fixed central density</u>

<u>Effect of the variation of the transition pressure</u> <u>in neutron stars with fixed total mass and crust mass percentage</u>

- Fixed total mass $M_T = 1.44 M_{\odot}$
- Fixed crust mass to 5%, 8% and 10% of the core mass
 - Co-rotating surface crust

We change the transition pressure of the star

<u>Effect of the variation of the transition pressure</u> <u>in neutron stars with fixed total mass and crust mass percentage</u>

<u>Giant glitch mechanism of the Vela Pulsar:</u>

- Crust rupture
- Energy liberation in the inner crust
- > Temperature rising on the outer layers of the star
- Modification of the equation of state of the transition region
- Increasing of the core-crust transition pressure
- Modification of the neutron star dynamical properties
- Increasing of the angular velocity of rotation

Total Mass: 1.44 Central Density: $1.279 \cdot 10^{15}$ g cm⁻³ Initial core-crust transition Pressure: $3.751 \cdot 10^{33}$ dyn cm⁻²

Date (MJD)	$\delta\Omega(10^{-6})$	$\delta p_{int}(10^{-10})$	$\delta ecc(10^{-6})$	$\delta Q(10^{-6})$	$\delta T(10^6 K)$
40289	2.34	0.70	2.36	4.73	4.11
41192	2.05	0.58	1.97	3.94	3.75
43693	3.06	0.93	3.15	6.31	4.75
45192	2.05	0.58	1.96	3.93	3.74
48457	2.72	0.81	2.76	5.51	4.43
51559	3.09	0.93	3.14	6.28	4.75
53959	2.62	0.82	2.74	5.48	4.46

Core-crust Transition pressure relative changes order 10⁻¹⁰ for the Vela giant glitches Thermal pressure variations are order 10⁶ K for the obtained corecrust transition changes

In agreement with heating due to energy depositions of 10⁴² erg

Post-glitch epoch: last for hundreds of days

Pulsar tends to recover its usual rythm of spin down

For the glitches considered, the fraction of angular velocity recovered during the post-glitch epoch is 1/100

Initial core-crust transition pressure is not recovered

<u>Permanent changes in the transition region equation of state</u> <u>after every giant glitch</u>

5. Conclusions

- ✓ Intrinsic formulation of the junction conditions in our model of neutron star with surface crust
- ✓ The core-crust transition pressure arise as an essential parameter of the configurations of our model
- Configurations with core-crust contra-rotation are found
- ✓ The increase of the transition pressure (due to changes in the equation of state because of thermal energy deposition after the crust rupture) explains the angular velocity increase of glitches
- ✓ The equation of state is permamently modified after every giant glitch of the Vela Pulsar