Second-order symmetric spacetimes in arbitrary dimension

Oihane F. Blanco
Joint work with M. Sánchez and J.M.M. Senovilla

Spanish Relativity Meeting, Granada, 2010

Index

1 Introduction.

- The aim of this work.
- Riemannian vs. Lorentzian case.

2 Main result: Full classification of second order-symmetric spacetimes (from four to arbitrary dimension).

3 Steps to the solution.

Introduction

- The aim of this work: to characterize locally the spacetimes such that

$$
\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0
$$

Introduction

- The aim of this work: to characterize locally the spacetimes such that

$$
\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0 .
$$

- Riemannian vs. Lorentzian case:

RIEMANNIAN CASE

- Locally symmetric spaces: $\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$-Cartan 1926,1927-

$$
\nabla_{\rho_{1}} \ldots \nabla_{\rho_{n}} R^{\alpha}{ }_{\beta \lambda \mu}=0 \Longrightarrow \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0 \text {-Tanno 1972- }
$$

(Essential tool: orthogonal de Rham decomposition.)

- Natural generalization of locally symmetric spaces:

Semi-symmetric spaces: $\nabla_{[\rho} \nabla_{\sigma]} R^{\alpha}{ }_{\beta \lambda \mu}=0$. -Szabó 1982,1985-

- Hierarchy of conditions:
$R^{\alpha}{ }_{\beta \lambda \mu}=K\left(g_{\lambda \beta} \delta_{\mu}^{\alpha}-g_{\mu} \delta_{\lambda}^{\alpha}\right) \quad \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0 \quad \nabla_{[\rho} \nabla_{\sigma]} R^{\alpha}{ }_{\beta \lambda \mu}=0$
Constant curvature Symmetric Semi-symmetric

Introduction

- The aim of this work: to characterize locally the spacetimes such that

$$
\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0
$$

- Riemannian vs. Lorentzian case:

But in the LORENTZIAN CASE...

- Locally symmetric spaces: $\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$-Cahen \& Wallach, 1970-

$$
\nabla_{\rho_{1}} \ldots \nabla_{\rho_{n}} R^{\alpha}{ }_{\beta \lambda \mu}=0 \nRightarrow \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0
$$

(Problem: Failure of orthogonal de Rham decomposition.)

- Natural generalization of locally symmetric spacetimes: ?
- Hierarchy of conditions in the Lorentzian case: ?

Introduction

- The aim of this work: to characterize locally the spacetimes such that

$$
\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0
$$

- Riemannian vs. Lorentzian case:

But in the LORENTZIAN CASE...

- Locally symmetric spaces: $\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$-Cahen \& Wallach, 1970-

$$
\nabla_{\rho_{1}} \ldots \nabla_{\rho_{n}} R^{\alpha}{ }_{\beta \lambda \mu}=0 \nRightarrow \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0
$$

(Problem: Failure of orthogonal de Rham decomposition.)

- Natural generalization of locally symmetric spacetimes:
$\nabla_{\sigma} \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$ makes sense. Called: second-order symmetric, in short 2-symmetric, spacetimes. -Senovilla, 2008-
- Hierarchy of conditions in the Lorentzian case:

Introduction

- The aim of this work: to characterize locally the spacetimes such that

$$
\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0 .
$$

- Riemannian vs. Lorentzian case:

But in the LORENTZIAN CASE...

- Locally symmetric spaces: $\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$-Cahen \& Wallach, 1970-

$$
\nabla_{\rho_{1}} \ldots \nabla_{\rho_{n}} R_{\beta \lambda \mu}^{\alpha}=0 \nRightarrow \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0
$$

(Problem: Failure of orthogonal de Rham decomposition.)

- Natural generalization of locally symmetric spacetimes:
$\nabla_{\sigma} \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$ makes sense. Called: second-order symmetric, in short 2-symmetric, spacetimes. -Senovilla, 2008-
- Hierarchy of conditions in the Lorentzian case:

$R^{\alpha}{ }_{\beta \lambda \mu}=K\left(g_{\lambda \beta} \delta_{\mu}^{\alpha}-g_{\mu \beta} \delta_{\lambda}^{\alpha}\right)$	$\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$	$\nabla_{\sigma} \nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$	$\nabla_{[\rho} \nabla_{\sigma]} R^{\alpha}{ }_{\beta \lambda \mu}=0$
Constant curvature	Symmetric	2-Symmetric	Semi-symmetric

2-SYMMETRIC SPACETIMES: FULL CLASSIFICATION

- IN 4-DIMENSIONS:

ThEOREM [OFB, Sánchez M, Senovilla JMM 2009]
A 2-symmetric non-symmetric 4-dimensional spacetime (M, g) is locally isometric to \mathbb{R}^{4} endowed with the metric

$$
d s^{2}=-2 d u(d v+H d u)+d x^{2}+d y^{2}
$$

where $H(u, x, y)=\left(\alpha_{1} u+\beta_{1}\right) x^{2}+\left(\alpha_{2} u+\beta_{2}\right) y^{2}+\left(\alpha_{3} u+\beta_{3}\right) x y$ for some constants $\left\{\alpha_{A}, \beta_{A}\right\}_{A=1,2,3}$ with $\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2} \neq 0$.

2-SYMMETRIC SPACETIMES: FULL CLASSIFICATION

- IN 4-DIMENSIONS:

THEOREM [OFB, Sánchez M, Senovilla JMM 2009]
A 2-symmetric non-symmetric 4-dimensional spacetime (M, g) is locally isometric to \mathbb{R}^{4} endowed with the metric

$$
d s^{2}=-2 d u(d v+H d u)+d x^{2}+d y^{2}
$$

where $H(u, x, y)=\left(\alpha_{1} u+\beta_{1}\right) x^{2}+\left(\alpha_{2} u+\beta_{2}\right) y^{2}+\left(\alpha_{3} u+\beta_{3}\right) x y$ for some constants $\left\{\alpha_{A}, \beta_{A}\right\}_{A=1,2,3}$ with $\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2} \neq 0$.

- IN ARBITRARY DIMENSIONS:

ThEOREM [OFB, Sánchez M, Senovilla JMM 2010]

A 2-symmetric non-symmetric \boldsymbol{n}-dimensional spacetime (M, g) is locally isometric to \mathbb{R}^{n} endowed with the metric

$$
d s^{2}=-2 d u(d v+H d u)+\sum_{i=2}^{d}\left(d x^{i}\right)^{2}+\sum_{i, j=d+1}^{n-1} g_{i j}\left(x^{d+1}, \ldots, x^{n-1}\right) d x^{i} d x^{j}
$$

where $H(u, x, y)=\sum_{i, j=2}^{d}\left(\alpha_{i j} u+\beta_{i j}\right) x^{i} x^{j}$ for some constants $\left\{\alpha_{i j}, \beta_{i j}\right\}_{i, j=1, \ldots, d}$, and $\sum_{i, j=d+1}^{n-1} g_{i j}\left(x^{d+1}, \ldots, x^{n-1}\right) d x^{i} d x^{j}$ (non-flat) locally symmetric.

2-SYMMETRIC SPACETIMES: STEPS FOR THE SEARCH

- $1^{\text {st }}$ step: when $\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0 \Longrightarrow \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0$???

THEOREM [Senovilla J M M, 2008]

Let $D \in M$ be a simply connected domain of an n-dimensional 2-symmetric Lorentzian manifold (M, g). Then, if there is no null covariantly constant vector field on D, (D, g) is in fact locally symmetric (i.e., $\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$).

2-SYMMETRIC SPACETIMES: STEPS FOR THE SEARCH

- $1^{\text {st }}$ step: when $\nabla_{\rho} \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0 \Longrightarrow \nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0$???

THEOREM [Senovilla J M M, 2008]

Let $D \in M$ be a simply connected domain of an n-dimensional 2-symmetric Lorentzian manifold (M, g). Then, if there is no null covariantly constant vector field on D, (D, g) is in fact locally symmetric (i.e., $\nabla_{\rho} R^{\alpha}{ }_{\beta \lambda \mu}=0$).

The spacetimes with a null covariantly constant vector field have the metric:

$$
\begin{equation*}
d s^{2}=-2 d u\left(d v+H\left(u, x^{k}\right) d u+W_{i}\left(u, x^{k}\right) d x^{i}\right)+g_{i j}\left(u, x^{k}\right) d x^{i} d x^{j}, \quad i, j \in\{2, \ldots, n-1\} \tag{1}
\end{equation*}
$$

Conclusion: the set of 2-symmetric non-symmetric spacetimes is contained in the set of the spacetimes with metric (1).

2-SYMMETRIC SPACETIMES: STEPS FOR THE SEARCH

- $2^{\text {nd }}$ Step: make a suitable choice of moving frame in order to write the equations of 2 -symmetry.

The obtained first result:
For a 2-symmetric spacetime, $g_{i j}$ is locally symmetric on each slice $u=u_{0}$

2-SYMMETRIC SPACETIMES: STEPS FOR THE SEARCH

- $3^{\text {rd }}$ Step: solve the equations:
- In four dimensions: the study is reduced to an analysis of the Petrov types of the spacetime, and it is almost straighforward to prove that $g=d x^{2}+d y^{2}$.
- In arbitrary dimension: The equations are much more involved and a deeper analysis is needed.

2-SYMMETRIC SPACETIMES: STEPS FOR THE SEARCH

- $3^{\text {rd }}$ Step: solve the equations:
- In four dimensions: the study is reduced to an analysis of the Petrov types of the spacetime, and it is almost straighforward to prove that $g=d x^{2}+d y^{2}$.
- In arbitrary dimension: The equations are much more involved and a deeper analysis is needed.
- After lengthly computations \longrightarrow partial decomposition of the equations

2-SYMMETRIC SPACETIMES: STEPS FOR THE SEARCH

- $3^{\text {rd }}$ Step: solve the equations:
- In four dimensions: the study is reduced to an analysis of the Petrov types of the spacetime, and it is almost straighforward to prove that $g=d x^{2}+d y^{2}$.
- In arbitrary dimension: The equations are much more involved and a deeper analysis is needed.
- After lengthly computations \longrightarrow partial decomposition of the equations
- Thanks to such decomposition, we find:
(1) the equations of Local Symmetry $\left(\nabla_{\sigma} R^{\alpha}{ }_{\beta \lambda \mu}=0\right)$
-already classified by Cahen\&Wallach-
$(2$ the equations of 2-symmetry for a plane wave
-easily solvable-

REFERENCES

Semi－symmetric Riemannian manifolds：
－Szabó Z I 1982 J．Differ．Geom． 17 531－82
－Szabó Z I 1985 Geom．Dedicata 19 65－108

Symmetric Lorentzian manifolds：
－Cahen M and Wallach N 1970 Bull．Amer．Math．Soc． 76 585－591

2－symmetric Lorentzian manifolds：
－Senovilla JMM 2008 Class．Quantum Grav． 25245011
－OFB，Sánchez M，Senovilla JMM 2010 J．Phys．：Conf．Ser． 229012021
－OFB，Sánchez M，Senovilla JMM Structure of second－order symmetric Lorentzian manifolds（In preparation）

