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Cosmological constant: simple and accurate 
description for cosmic acceleration, but...

... a more fundamental explanation of its tiny value 
would be more satisfactory.

Large-distance modifications of gravity suggeste

What about electromagnetism on large scales?

Its behaviour on astrophysical and cosmological 
scales is far from clear: unknown origin of magnetic 
fields observed in galaxies and clusters.

The problems of dark energy and cosmic 
magnetic fields
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Viability and consistency

Local gravity tests Stability
PPN parameters exactly 
the same as GR for any 
value of      , so it has the 
same small scales behavior.

Classical
All the modes 
propagate at the 
speed of light.

Quantum
The three physical 
states carry 
positive energy.

CMB and LSS Compatible as long 
as the initial 
perturbation is not 
too large, implying a 
reduction in the 
inflation scale by a 
factor of 15.

A0



Cosmic magnetic fields

A. Neronov & I.  Vovk. Science 328, 73 (2010)

•A s t ro p h y s i c a l m e c h a n i s m s : 
Difficulties to explain intergalactic 
magnetic fields.

•Inflation-based models: generate 
super-Hubble modes that are 
severely constrained by BBN.

•Phase trans i t ions: strongly 
constrained by causality. Very blue 
power spectrum leading to weak 
magnetic fields on large scales.

•Second order perturbations: very 
weak magnetic fields.



Effective electromagnetic current

∇νFµν + ξ∇µ (∇ν Aν) = Jµ



Effective electromagnetic current

∇νFµν + ξ∇µ (∇ν Aν) = Jµ ∇νFµν = Jµ
T

Jµ
T = Jµ − ξ∇µ(∇ν Aν)



Effective electromagnetic current

∇νFµν + ξ∇µ (∇ν Aν) = Jµ

∇µ Jµ
T = 0

∇νFµν = Jµ
T

Jµ
T = Jµ − ξ∇µ(∇ν Aν)



Effective electromagnetic current

∇νFµν + ξ∇µ (∇ν Aν) = Jµ

∇µ Jµ
T = 0

∇νFµν = Jµ
T

Jµ
T = Jµ − ξ∇µ(∇ν Aν)

Even if the primordial plasma is electrically neutral, the 
universe acquires an effective stochastic distribution of 
charge density given by

ρg = −ξ∂0(∇µ Aµ)



Spectrum of effective electric charge

Pρ(k) =






0, k < H0

Ω2
M

H
2
0 H

4
k0

16π2

�
k

k0

�−4�−2
, H0 < k < keq

2ΩM H
2
0 H

4
k0

16π2(1+zeq)

�
k

k0

�−4�
, k > keq.

Super-Hubble modes

Modes entering in the 
matter era

Modes entering in the 
radiation era

P∇A(k) =
9H

4
k0

16π2

�
k

k0

�−4�
�(∇ν Aν) = 0



Cosmic magnetic fields

Fµν
;νuµ =

�µνρσ

√g
Bρuσ ;νuµ = Jµ

∇·Auµ �ω · �B = ρ0
g
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∝ a

Ohm’s law Jµ − uµuν Jν = σFµνuν Eµ = 0
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Conclusions
EM field can be consistently quantized with three physical 
states without the need of Lorenz condition.

Quantum fluctuations of the new state during an 
inflationary epoch at the electroweak scale give rise to an 
effective cosmological constant on large scales with the 
correct value.

The model satisfies all the viability conditions and it is in 
agreement with CMB and LSS measurements.

The true nature of dark energy can be established without 
resorting to new physics.

Strong cosmic magnetic fields can be generated on large 
scales.
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