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§ Black Holes (BHs) radiate  Thermodynamics

§ Quantum Gravity

§ Minisuperspace approximation (Quantum Cosmology)

§ Noncommutative Space-Time (NC):

§ String / M-Theory

§ Gravitational Quantum Well

§ Putative signature of Quantum Gravity

Motivation 

Use a phase-space NC genelarization of the Kantowski-Sachs 
cosmological model to examine the interior of a Schwarzchild BH. 

Calculate thermodynamical properties of a Schwarzschild BH and study 
its singularity.



§ r<2M, time and radial coordinates interchange.

§ An isotropic metric turns into an anisotropic one

§ Mapped to the Kantowski-Sachs metric

Schwarzschild vs Kantowski-Sachs: 

§ Away from the horizon t=r=2M:

General Relativity solutions where the causal structure of 
space-time changes at different regions of space-time.



§ ij e ij antisymmetric real constant ( dxd) matrices

§ Seiberg-Witten map: class of non-canonical linear 
transformations

§ Relates standard Heisenberg algebra with noncommutative algebra

§ States of system:
§  wave functions of the ordinary Hilbert space

§ Schrödinger equation:
§ Modified , -dependent Hamiltonian 

§ Dynamics of the system

Phase Space Noncommutative Extension of Quantum Mechanics:



Noncommutative Quantum Cosmology:

§ , : scale factors, N: lapse function

§ ADM Formalism          Hamiltonian for KS metric:

§ P , P: canonical momenta conjugated to , 

§ Lapse function (gauge choice):



KS Cosmological Model – Classical and Quantum Models:

§ Equations of motion (Noncommutative):

§ Non-unitary linear transformation, SW map:

§ Noncommutative WDW Equation:

Constant of 
motion:

θ~ LP2 ~ 1

~LP-2~1



§ Solutions of NCWDW Eq. are simultaneously eigenstates of 
Hamiltonian and constraint.

§ If a( c, c) is an eigenstate of operator Â with eigenvalue a IR:   

§ Subtituting into NCWDW Eq. yields:

Solutions – Noncommutative WDW Equation:

From constraint:

+



Model - Potential:

§ Potential function:

For η values fairly typical and non-zero, potential has a 
local minimum and maximum.



Model - Potential:

§ Local minimum:

§ Solution (implicit):

§ Potential function in second order in x-x0:

§ NCWDW Equation: 



Model - Potential:

§ Comparing with Schrodinger equation of harmonic 
oscillator:

§ Quantum correction to potential:

§ Potential function:

§ Partition Function:



Thermodynamical properties:

§ Noncommutative internal energy :

§ Noncommutative Temperature (E=M), M>>1:

§ Noncommutative Entropy (neglecting terms proportional 
to η2/M2): c=12D=5.

68



Singularity, t=r=0:

§ By the identification between metrics:

§ Study the limit:

§ NCWDW equation in this limit:

Inverted harmonic oscillator: self-adjoint Hamiltonian with a continuous 
spectrum.



Model – Feynman-Hibbs procedure:

§ Solution to NCWDW equation in t=r=0:

§ For all a:

§ Thus, for a suitable although fairly general choice of C(a):

Necessary condition to provide a quantum regularization of 
the classical singularity



Model – Feynman-Hibbs procedure:

§ Wave function oscillatory for βC. Fix βC-hypersurface:
  

§ Probability of finding the BH at the singularity:

DIVERGES!

Is the probability of finding the BH at the singularity 
zero?

Inverted harmonic oscillator displays non-normalizable 
eigenstates!

Noncommuativity of this form cannot be regarded as 
the final answer for the singularity problem of the 
Schwarzschild BH!



Singularity, t=r=0:

§ Phase-Space Noncanonical Noncommutativity:

§ Potential

§ Solutions of NCWDW Equation:
§ Square integrable
§ Probability vanishes!

Solutions of the new NCWDW equation would display zero 
probability at the singularity .



Conclusions:

§ Kantowski-Sachs used to study interior of a Schwarzschild 
BH (r<2M)

§ Thermodynamical quantities and singularity analyzed

§ Momentum noncommutativity seems crucial:
§ Potential with quadratic term allowing Feynman-Hibbs 

procedure 
§ Noncommutative Temperature and Noncommutative 

Entropy

§ Singularity t=r=0:
§ Inverted harmonic oscillator
§ Wave function vanishes but is not square integrable 

with phase space canonical NC.
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