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Local Isometric Embedding

A spacetime is said to be of embedding class N if it
can be (locally) isometrically embedded in a flat
pseudo-Riemannian manifold of dimension 4 + N, but
in no flat manifold of smaller dimension.

Thus a spacetime is of embedding class 2 if it can be
embedded in a flat space of signature
(+1,−1,−1,−1,e1,e2) where ei = ±1.

There are no vacuum spacetimes of embedding class
1 and the only Einstein spaces of class 1 have
constant curvature.

Any spacetime is of embedding class 6 or less.
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Class 2 Embedding Equations

The embedding of a spacetime of class 2 is determined
by two 2nd fundamental forms Ωab & Λab and a torsion
vector ta satisfying:

Gauss Equations

Rab
cd = 2e1Ωa

[cΩb
d] + 2e2Λa

[cΛb
d]

Codazzi Equations

Ωa
[b;c] = −e2Λa

[btc]

Λa
[b;c] = e1Ωa

[btc]

Ricci Equations

t[a;b] = −Ωc
[aΛb]c
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The two normals to the embedded spacetime in the
enveloping 6-D manifold (and so the 2nd forms) are
only determined up to a rotation & reflections if
e1e2 = +1 or up to a boost & reflections if e1e2 = −1.

Thus, for e1e2 = 1

Ω̃ = ±(cos θΩ + sin θΛ) Λ̃ = ±(− sin θΩ + cos θΛ)

whereas, for e1e2 = −1

Ω̃ = ±(cosh θΩ + sinh θΛ) Λ̃ = ±(sinh θΩ + cosh θΛ)

The torsion vector transforms as t̃a = ta + θ,a.

Thus, if the torsion vector is a gradient, (equivalently if
Ω & Λ commute), the torsion vector may be set to
zero — 2 Codazzi equations decouple.
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Yakupov’s results for Class 2 Vacua

In 1968 Yakupov proved the useful identity for class 2
vacua:

Rab
cdCcd = 0 where Cab = Ωe

[aΛb]e

Thus C is the commutator of Ω & Λ. His proof used the
Gauss, Codazzi and Ricci equations plus the Ricci
identities.

Then, in 1973, he stated without proof two results:
For class 2 vacua, the commutator Cab must vanish
and hence the torsion vector ta is a gradient.

There are no class 2 vacua of Petrov type III.

Most subsequent work has assumed Cab = 0. In
particular Van den Bergh (1990) confirmed the
non-existence class 2 vacua of Petrov type III subject
to this assumption.
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Yakupov’s Results II

Yakupov gave a few hints, but no details, as to the proof:
For each Petrov type in turn a canonical basis was
chosen for the Riemann tensor.

Then solutions for the 2 second fundamental forms
were obtained compatible with the vacuum
conditions Rab = 0.

Use was made of the identity Rab
cdCcd = 0

For all these solutions the two 2nd fundamental forms
commuted.

As far as one can ascertain the proof was purely
algebraic following from the Gauss equations, vacuum
conditions & the identity Rab

cdCcd = 0 .
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Class Two Vacua

Contracting the Gauss equation the vacuum
condition becomes:

Ωa
cΩc

b − ωΩa
b + e(Λa

cΛc
b − λΛa

b) = 0

where ω and λ are the traces of Ω and Λ respectively
and e = e1e2 = ±1.

Let us call Ω2 − ωΩ the Ricci square of Ω and similarly
the Ricci square of Λ is Λ2 − λΛ.

Thus, the Ricci squares of Ω & Λ differ by at most a sign
and so a fortiori have the same Segré type.

Moreover, it follows that the Ricci square Ω2 − ωΩ & Λ
commute and so do Λ2 − λΛ & Ω.
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Moreover, it follows that the Ricci square Ω2 − ωΩ & Λ
commute and so do Λ2 − λΛ & Ω.

ERE2010 Session Va Class II Vacua 7/17



Towards a counter-example

As we will see below, it is easy to find examples where
the two second fundamental forms Ω & Λ satisfy the
vacuum conditions, but which do not commute.

Remarkably all these examples satisfy Yakupov’s
identity Rab

cdCcd = 0 and its dual Rab
cdC∗cd = 0. The

identity can be proved using only the Gauss
equations and vacuum conditions. It is a purely
algebraic constraint.

Yakupov’s result, if true, cannot follow purely
algebraically as he hinted. If these potential
counter-examples are to be excluded, it is necessary
to consider integrabiity conditions derived from
Codazzi and Bianchi identities.
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Some Consequences of Yakupov’s Identity

Yakupov’s identity states that Cab, if non-zero, is an
eigenbivector of the Riemann tensor with zero
eigenvalue. This immediately excludes Petrov types II
and D.

Furthermore Brans (1975) proved that Petrov type I
vacuum spaces with a zero eigenvalue do not exist.
His proof used the NP formalism and made extensive
use of the Bianchi identities and commutator
relations.

Thus we may conclude that the only class 2 vacua
with non-zero commutator Cab must be of Petrov
type N or III.
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Construction of non-commuting Ω & Λ

If the Ricci square of Ω (and hence that of Λ) is
non-degenerate, then so are Ω & Λ and they both
have the same invariant subspace structure and so
commute.

Hence we need to consider cases where the Ricci
squares are degenerate, but where Ω & Λ are not (&
cases where they are less degenerate than their Ricci
squares).

Furthermore Ω & Λ must have different invariant
subspace structures if they are not to commute.
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Extra Degeneracies of the Ricci Square I

If Ω is of Segré type [2, 1, 1] with eigenvalues λ, µ & ν
resp. its Ricci square is of Segré type

[(1, 1), 1, 1] if µ+ ν = 0

[2, (1, 1)] if λ = 0

[(1, 1), (1, 1)] if λ = µ+ ν = 0

If Ω is of Segré type [3, 1] with eigenvalues λ & µ resp.
its Ricci square is of Segré type

[(2, 1), 1] if λ+ µ = 0

[(3, 1)] if λ = 0

If Ω is of Segré type [1, 1, 1, 1] with eigenvalues λ, µ, ν &
σ resp. its Ricci square is of Segré type

[(1, 1), 1, 1] if ν + σ = 0

[1, 1, (1, 1)] if λ+ µ = 0

[(1, 1), (1, 1)] if λ+ µ = ν + σ = 0
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Extra Degeneracies of the Ricci Square II

If Ω is of Segré type [Z , Z̄ , 1, 1] with eigenvalues λ, λ̄, µ
& ν resp. its Ricci square is of Segré type

[(1, 1), 1, 1] if µ+ ν = 0

[Z , Z̄ , (1, 1)] if λ+ λ̄ = 0

[(1, 1), (1, 1)] if λ+ λ̄ = µ+ ν = 0

There are 17 possible non-commuting combinations
compatible with the vacuum conditions. These are all
tabulated later.

However, first the general method of constructing the
combinations will be illustrated with two examples.
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Potential Counterexample 1

Ω & Λ are Segré type [211] with Ricci squares [2(11)]
Ωab = β1`a`b − λ1xaxb − µ1yayb
Λab = β2`a`b − λ2x̃a x̃b − µ2ỹaỹb

(`a,na, xa, ya) is a half-null tetrad. (x̃a, ỹa) is an
orthonormal dyad dependent on (xa, ya):

x̃a = cos θxa + sin θya ỹa = − sin θxa + cos θya

Vacuum conditions:
λ1µ1 + eλ2µ2 = 0, (λ1 + µ1)β1 + e(λ2 + µ2)β2 = 0
Commutator: Cab = (λ1 − µ1)(λ2 − µ2) sin 2θx[ayb]

Riemann tensor is Petrov type N:

Rab
cd = 4

(
β1λ1 + eβ2(c2λ2 + s2µ2)

)
`[axb]`[cxd]

−4
(
β1µ1 + eβ2(s2λ2 + c2µ2)

)
`[ayb]`[cyd]

−4ecsβ2(λ2 − µ2)(`[axb]`[cyd] + `[ayb]`[cxd])
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Potential Counterexample 2

Ω & Λ are Segré type [211] with Ricci squares [(11)11]
Ωab = λ1(`anb + na`b) + β1`a`b − µ1(xaxb − yayb)
Λab = λ2(`anb + na`b) + β2nanb − µ2(xaxb − yayb)

Vacuum conditions: e = −1, λ1 = λ2, µ1 = µ2

Commutator: Cab = 2β1β2`[anb]

Riemann tensor is Petrov type I and so excluded by
Brans’ theorem:

Rab
cd = −4β1µ

(
`[axb]`[cxd] − `[ayb]`[cyd]

)
+4β2µ

(
n[axb]n[cxd] − n[ayb]n[cyd]

)
RabcdRabcd = −32β1β2µ

2
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All Potential Counterexamples

Ω Λ Ricci Square Cab Petrov Type
[31] [31] [(21)1] = 0 N
[31] [211] [(21)1] null 0

[211] [211] [(11)11] or [(11)(11)] ST or NS I
[211] [211] [2(11)] SS N
[211] [1111] [(11)11] or [(11)(11)] ST or NS 0
[211] [Z Z̄11] [(11)11] or [(11)(11)] ST or NS 0

[1111] [Z Z̄11] [(11)11] or [(11)(11)] ST 0
[Z Z̄11] [Z Z̄11] [(11)11] ST I
[Z Z̄11] [Z Z̄11] [Z Z̄(11)] SS I
[Z Z̄11] [Z Z̄11] [(11)(11)] NS I
[1111] [1111] [(11)11] ST I
[1111] [1111] [11(11)] SS I
[1111] [1111] [(11)(11)] NS I

Type of the bivector Cab : ST = simple timelike,
SS = simple spacelike, NS = non-simple
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Summary

Doubt is cast on a result of Yakupov. Many possible
counterexamples are derived.

In several cases the Riemann tensor vanishes. There
(presumably) exist many embeddings with torsion of a
flat 4-D spacetime in a flat 6-D flat manifold.
All, but one, of the remaining cases are Petrov type I
and are excluded by Brans’ theorem.
The remaining case is the sole surviving possible
counterexample. Work is ongoing to see if it satisfies
the required integrability conditions. It is type N.
There are no examples of Petrov type III and so
Yakupov’s second theorem appears to be valid.
Yakupov’s identity is shown to be a purely algebraic
constraint derivable from the Gauss equation and
vacuum conditions rather than an integrability
condition derived from Codazzi equations etc..
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All, but one, of the remaining cases are Petrov type I
and are excluded by Brans’ theorem.

The remaining case is the sole surviving possible
counterexample. Work is ongoing to see if it satisfies
the required integrability conditions. It is type N.
There are no examples of Petrov type III and so
Yakupov’s second theorem appears to be valid.
Yakupov’s identity is shown to be a purely algebraic
constraint derivable from the Gauss equation and
vacuum conditions rather than an integrability
condition derived from Codazzi equations etc..
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A Simple Proof of Yakupov’s Identity

As the first step in his proof, Yakupov derived the
following equations from the Codazzi equations using
the Ricci identities:

Ωe
[bRcd]ea = Ωa[b;cd] = 2e2t[c;dΛb]a

Λe
[bRcd]ea = Λa[b;cd] = −2e1t[c;dΩb]a

However, we can derive these equations (with t[a;b]

replaced by the commutator Cab) by substituting for
Rabcd using the Gauss equation in the expressions
Ωe

[bRcd]ea & Λe
[bRcd]ea.

The rest of the proof follows identical lines to
Yakupov’s (with t[a;b] replaced throughout by the
commutator Cab)
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