Vacuum Spacetimes of Embedding Class Two

Alan Barnes

Computer Science
School of Engineering and Applied Science
Aston University, Birmingham UK

10 September 2010

Aston University
Birmingham

Local Isometric Embedding

- A spacetime is said to be of embedding class N if it can be (locally) isometrically embedded in a flat pseudo-Riemannian manifold of dimension $4+N$, but in no flat manifold of smaller dimension.

Local Isometric Embedding

- A spacetime is said to be of embedding class N if it can be (locally) isometrically embedded in a flat pseudo-Riemannian manifold of dimension $4+N$, but in no flat manifold of smaller dimension.
- Thus a spacetime is of embedding class 2 if it can be embedded in a flat space of signature $\left(+1,-1,-1,-1, e_{1}, e_{2}\right)$ where $e_{i}= \pm 1$.

Local Isometric Embedding

- A spacetime is said to be of embedding class N if it can be (locally) isometrically embedded in a flat pseudo-Riemannian manifold of dimension $4+N$, but in no flat manifold of smaller dimension.
- Thus a spacetime is of embedding class 2 if it can be embedded in a flat space of signature $\left(+1,-1,-1,-1, e_{1}, e_{2}\right)$ where $e_{i}= \pm 1$.
- There are no vacuum spacetimes of embedding class 1 and the only Einstein spaces of class 1 have constant curvature.
- Any spacetime is of embedding class 6 or less.

Class 2 Embedding Equations

The embedding of a spacetime of class 2 is determined by two 2 nd fundamental forms $\Omega_{a b} \& \Lambda_{a b}$ and a torsion vector t_{a} satisfying:

- Gauss Equations

$$
R_{c d}^{a b}=2 e_{1} \Omega_{[c}^{a} \Omega_{d]}^{b}+2 e_{2} \Lambda_{[c}^{a} \Lambda_{d]}^{b}
$$

Class 2 Embedding Equations

The embedding of a spacetime of class 2 is determined by two 2 nd fundamental forms $\Omega_{a b} \& \Lambda_{a b}$ and a torsion vector t_{a} satisfying:

- Gauss Equations

$$
R_{c d}^{a b}=2 e_{1} \Omega_{[c}^{a} \Omega_{d]}^{b}+2 e_{2} \Lambda_{[c}^{a} \Lambda_{d]}^{b}
$$

- Codazzi Equations

$$
\begin{gathered}
\Omega_{[b ; c]}^{a}=-e_{2} \Lambda_{[b}^{a} t_{c]} \\
\Lambda_{[b ; c]}^{a}=e_{1} \Omega_{[b}^{a}{ }_{c c]}
\end{gathered}
$$

Class 2 Embedding Equations

The embedding of a spacetime of class 2 is determined by two 2 nd fundamental forms $\Omega_{a b} \& \Lambda_{a b}$ and a torsion vector t_{a} satisfying:

- Gauss Equations

$$
R_{c d}^{a b}=2 e_{1} \Omega_{[c}^{a} \Omega_{d]}^{b}+2 e_{2} \Lambda_{[c}^{a} \Lambda_{d]}^{b}
$$

- Codazzi Equations

$$
\begin{gathered}
\Omega_{[b ; c]}^{a}=-e_{2} \Lambda_{[b}^{a} t_{c]} \\
\Lambda_{[b ; c]}^{a}=e_{1} \Omega_{[b}^{a}{ }_{c c]}
\end{gathered}
$$

- Ricci Equations

$$
t_{[a ; b]}=-\Omega^{c}{ }_{[a} \Lambda_{b] c}
$$

- The two normals to the embedded spacetime in the enveloping 6-D manifold (and so the 2nd forms) are only determined up to a rotation \& reflections if $e_{1} e_{2}=+1$ or up to a boost $\&$ reflections if $e_{1} e_{2}=-1$.
- The two normals to the embedded spacetime in the enveloping 6-D manifold (and so the 2nd forms) are only determined up to a rotation \& reflections if $e_{1} e_{2}=+1$ or up to a boost $\&$ reflections if $e_{1} e_{2}=-1$.
- Thus, for $e_{1} e_{2}=1$

$$
\tilde{\Omega}= \pm(\cos \theta \Omega+\sin \theta \Lambda) \quad \tilde{\Lambda}= \pm(-\sin \theta \Omega+\cos \theta \Lambda)
$$

whereas, for $e_{1} e_{2}=-1$

$$
\tilde{\Omega}= \pm(\cosh \theta \Omega+\sinh \theta \Lambda) \quad \tilde{\Lambda}= \pm(\sinh \theta \Omega+\cosh \theta \Lambda)
$$

- The two normals to the embedded spacetime in the enveloping 6-D manifold (and so the 2nd forms) are only determined up to a rotation \& reflections if $e_{1} e_{2}=+1$ or up to a boost $\&$ reflections if $e_{1} e_{2}=-1$.
- Thus, for $e_{1} e_{2}=1$

$$
\tilde{\Omega}= \pm(\cos \theta \Omega+\sin \theta \Lambda) \quad \tilde{\Lambda}= \pm(-\sin \theta \Omega+\cos \theta \Lambda)
$$

whereas, for $e_{1} e_{2}=-1$

$$
\tilde{\Omega}= \pm(\cosh \theta \Omega+\sinh \theta \Lambda) \quad \tilde{\Lambda}= \pm(\sinh \theta \Omega+\cosh \theta \Lambda)
$$

The torsion vector transforms as $\tilde{f}_{a}=t_{a}+\theta_{, a}$.

- Thus, if the torsion vector is a gradient, (equivalently if $\Omega \& \wedge$ commute), the torsion vector may be set to zero - 2 Codazzi equations decouple.

Yakupov's results for Class 2 Vacua

- In 1968 Yakupov proved the useful identity for class 2 vacua:

$$
R_{c d}^{a b} C^{c d}=0 \quad \text { where } \quad C_{a b}=\Omega_{[a}^{e} \Lambda_{b] e}
$$

Thus C is the commutator of $\Omega \& \Lambda$. His proof used the Gauss, Codazzi and Ricci equations plus the Ricci identities.

Yakupov's results for Class 2 Vacua

- In 1968 Yakupov proved the useful identity for class 2 vacua:

$$
R_{c d}^{a b} C^{c d}=0 \quad \text { where } \quad C_{a b}=\Omega_{[a}^{e} \Lambda_{b] e}
$$

Thus C is the commutator of $\Omega \& \Lambda$. His proof used the Gauss, Codazzi and Ricci equations plus the Ricci identities.

- Then, in 1973, he stated without proof two results:
- For class 2 vacua, the commutator $C_{a b}$ must vanish and hence the torsion vector t^{a} is a gradient.
- There are no class 2 vacua of Petrov type III.

Yakupov's results for Class 2 Vacua

- In 1968 Yakupov proved the useful identity for class 2 vacua:

$$
R_{c d}^{a b} C^{c d}=0 \quad \text { where } \quad C_{a b}=\Omega_{[a}^{e} \Lambda_{b] e}
$$

Thus C is the commutator of $\Omega \& \Lambda$. His proof used the Gauss, Codazzi and Ricci equations plus the Ricci identities.

- Then, in 1973, he stated without proof two results:
- For class 2 vacua, the commutator $C_{a b}$ must vanish and hence the torsion vector t^{a} is a gradient.
- There are no class 2 vacua of Petrov type III.
- Most subsequent work has assumed $C_{a b}=0$. In particular Van den Bergh (1990) confirmed the non-existence class 2 vacua of Petrov type III subject to this assumption.

Yakupov's Results II

Yakupov gave a few hints, but no details, as to the proof:

- For each Petrov type in turn a canonical basis was chosen for the Riemann tensor.
- Then solutions for the 2 second fundamental forms were obtained compatible with the vacuum conditions $R_{a b}=0$.
- Use was made of the identity $R^{a b}{ }_{c d} C^{c d}=0$
- For all these solutions the two 2 nd fundamental forms commuted.
As far as one can ascertain the proof was purely algebraic following from the Gauss equations, vacuum conditions \& the identity $R_{c d}^{a b} C^{c d}=0$.

Class Two Vacua

- Contracting the Gauss equation the vacuum condition becomes:

$$
\Omega_{c}^{a} \Omega_{b}^{c}-\omega \Omega_{b}^{a}+e\left(\Lambda_{c}^{a} \Lambda_{b}^{c}-\lambda \Lambda_{b}^{a}\right)=0
$$

where ω and λ are the traces of Ω and Λ respectively and $e=e_{1} e_{2}= \pm 1$.

Class Two Vacua

- Contracting the Gauss equation the vacuum condition becomes:

$$
\Omega_{c}^{a} \Omega_{b}^{c}-\omega \Omega_{b}^{a}+e\left(\Lambda_{c}^{a} \Lambda_{b}^{c}-\lambda \Lambda_{b}^{a}\right)=0
$$

where ω and λ are the traces of Ω and Λ respectively and $e=e_{1} e_{2}= \pm 1$.

- Let us call $\Omega^{2}-\omega \Omega$ the Ricci square of Ω and similarly the Ricci square of Λ is $\Lambda^{2}-\lambda \Lambda$.
- Thus, the Ricci squares of $\Omega \& \wedge$ differ by at most a sign and so a fortiori have the same Segré type.

Class Two Vacua

- Contracting the Gauss equation the vacuum condition becomes:

$$
\Omega_{c}^{a} \Omega_{b}^{c}-\omega \Omega_{b}^{a}+e\left(\Lambda_{c}^{a} \Lambda_{b}^{c}-\lambda \Lambda_{b}^{a}\right)=0
$$

where ω and λ are the traces of Ω and Λ respectively and $e=e_{1} e_{2}= \pm 1$.

- Let us call $\Omega^{2}-\omega \Omega$ the Ricci square of Ω and similarly the Ricci square of Λ is $\Lambda^{2}-\lambda \Lambda$.
- Thus, the Ricci squares of $\Omega \& \Lambda$ differ by at most a sign and so a fortiori have the same Segré type.
- Moreover, it follows that the Ricci square $\Omega^{2}-\omega \Omega \& \Lambda$ commute and so do $\Lambda^{2}-\lambda \Lambda \& \Omega$.

Towards a counter-example

- As we will see below, it is easy to find examples where the two second fundamental forms $\Omega \& \Lambda$ satisfy the vacuum conditions, but which do not commute.

Towards a counter-example

- As we will see below, it is easy to find examples where the two second fundamental forms $\Omega \& \Lambda$ satisfy the vacuum conditions, but which do not commute.
- Remarkably all these examples satisfy Yakupov's identity $R^{a b}{ }_{c d} C^{c d}=0$ and its dual $R^{a b}{ }_{c d} C^{* c d}=0$. The identity can be proved using only the Gauss equations and vacuum conditions. It is a purely algebraic constraint.

Towards a counter-example

- As we will see below, it is easy to find examples where the two second fundamental forms $\Omega \& \Lambda$ satisfy the vacuum conditions, but which do not commute.
- Remarkably all these examples satisfy Yakupov's identity $R^{a b}{ }_{c d} C^{c d}=0$ and its dual $R^{a b}{ }_{c d} C^{* c d}=0$. The identity can be proved using only the Gauss equations and vacuum conditions. It is a purely algebraic constraint.
- Yakupov's result, if true, cannot follow purely algebraically as he hinted. If these potential counter-examples are to be excluded, it is necessary to consider integrabiity conditions derived from
Codazzi and Bianchi identities.

Some Consequences of Yakupov's Identity

- Yakupov's identity states that $C_{a b}$, if non-zero, is an eigenbivector of the Riemann tensor with zero eigenvalue. This immediately excludes Petrov types II and D.

Some Consequences of Yakupov's Identity

- Yakupov's identity states that $C_{a b}$, if non-zero, is an eigenbivector of the Riemann tensor with zero eigenvalue. This immediately excludes Petrov types II and D.
- Furthermore Brans (1975) proved that Petrov type I vacuum spaces with a zero eigenvalue do not exist. His proof used the NP formalism and made extensive use of the Bianchi identities and commutator relations.

Some Consequences of Yakupov's Identity

- Yakupov's identity states that $C_{a b}$, if non-zero, is an eigenbivector of the Riemann tensor with zero eigenvalue. This immediately excludes Petrov types II and D.
- Furthermore Brans (1975) proved that Petrov type I vacuum spaces with a zero eigenvalue do not exist. His proof used the NP formalism and made extensive use of the Bianchi identities and commutator relations.
- Thus we may conclude that the only class 2 vacua with non-zero commutator $C_{a b}$ must be of Petrov type N or III.

Construction of non-commuting $\Omega \& \wedge$

- If the Ricci square of Ω (and hence that of Λ) is non-degenerate, then so are $\Omega \& \Lambda$ and they both have the same invariant subspace structure and so commute.

Construction of non-commuting $\Omega \& \wedge$

- If the Ricci square of Ω (and hence that of Λ) is non-degenerate, then so are $\Omega \& \Lambda$ and they both have the same invariant subspace structure and so commute.
- Hence we need to consider cases where the Ricci squares are degenerate, but where $\Omega \& \Lambda$ are not (\& cases where they are less degenerate than their Ricci squares).
- Furthermore Ω \& \wedge must have different invariant subspace structures if they are not to commute.

Extra Degeneracies of the Ricci Square I

- If Ω is of Segré type $[2,1,1]$ with eigenvalues $\lambda, \mu \& \nu$ resp. its Ricci square is of Segré type
- $[(1,1), 1,1] \quad$ if $\mu+\nu=0$
- $[2,(1,1)] \quad$ if $\lambda=0$
- $[(1,1),(1,1)] \quad$ if $\lambda=\mu+\nu=0$

Extra Degeneracies of the Ricci Square I

- If Ω is of Segré type $[2,1,1]$ with eigenvalues $\lambda, \mu \& \nu$ resp. its Ricci square is of Segré type
- $[(1,1), 1,1] \quad$ if $\mu+\nu=0$
- $[2,(1,1)] \quad$ if $\lambda=0$
- $[(1,1),(1,1)] \quad$ if $\lambda=\mu+\nu=0$
- If Ω is of Segré type [3, 1] with eigenvalues $\lambda \& \mu$ resp. its Ricci square is of Segré type
- $[(2,1), 1]$ if $\lambda+\mu=0$
- $[(3,1)] \quad$ if $\lambda=0$

Extra Degeneracies of the Ricci Square I

- If Ω is of Segré type $[2,1,1]$ with eigenvalues $\lambda, \mu \& \nu$ resp. its Ricci square is of Segré type
- $[(1,1), 1,1] \quad$ if $\mu+\nu=0$
- [2, (1, 1)] if $\lambda=0$
- $[(1,1),(1,1)] \quad$ if $\lambda=\mu+\nu=0$
- If Ω is of Segré type [3, 1] with eigenvalues $\lambda \& \mu$ resp. its Ricci square is of Segré type
- $[(2,1), 1] \quad$ if $\lambda+\mu=0$
- $[(3,1)] \quad$ if $\lambda=0$
- If Ω is of Segré type $[1,1,1,1]$ with eigenvalues λ, μ, ν \& σ resp. its Ricci square is of Segré type
- $[(1,1), 1,1] \quad$ if $\nu+\sigma=0$
- $[1,1,(1,1)] \quad$ if $\lambda+\mu=0$
- $[(1,1),(1,1)] \quad$ if $\lambda+\mu=\nu+\sigma=0$

Extra Degeneracies of the Ricci Square II

- If Ω is of Segré type $[Z, \bar{Z}, 1,1]$ with eigenvalues $\lambda, \bar{\lambda}, \mu$ \& ν resp. its Ricci square is of Segré type
- $[(1,1), 1,1] \quad$ if $\mu+\nu=0$
- $[Z, \bar{Z},(1,1)] \quad$ if $\lambda+\bar{\lambda}=0$
- $[(1,1),(1,1)] \quad$ if $\lambda+\bar{\lambda}=\mu+\nu=0$

Extra Degeneracies of the Ricci Square II

- If Ω is of Segré type $[Z, \bar{Z}, 1,1]$ with eigenvalues $\lambda, \bar{\lambda}, \mu$ \& ν resp. its Ricci square is of Segré type
- $[(1,1), 1,1] \quad$ if $\mu+\nu=0$
- $[Z, \bar{Z},(1,1)] \quad$ if $\lambda+\bar{\lambda}=0$
- $[(1,1),(1,1)] \quad$ if $\lambda+\bar{\lambda}=\mu+\nu=0$
- There are 17 possible non-commuting combinations compatible with the vacuum conditions. These are all tabulated later.
- However, first the general method of constructing the combinations will be illustrated with two examples.

Potential Counterexample 1

- $\Omega \& \Lambda$ are Segré type [211] with Ricci squares [2(11)]

$$
\begin{aligned}
& \Omega_{a b}=\beta_{1} \ell_{a} l_{b}-\lambda_{1} x_{a} x_{b}-\mu_{1} Y_{a} Y_{b} \\
& \Lambda_{a b}=\beta_{2} \ell_{a} l_{b}-\lambda_{2} \tilde{x}_{a} \tilde{x}_{b}-\mu_{2} \tilde{Y}_{a} \tilde{Y}_{b}
\end{aligned}
$$

Potential Counterexample 1

- $\Omega \& \wedge$ are Segré type [211] with Ricci squares [2(11)]

$$
\begin{aligned}
& \Omega_{a b}=\beta_{1} \ell_{a} \ell_{b}-\lambda_{1} x_{a} x_{b}-\mu_{1} Y_{a} Y_{b} \\
& \Lambda_{a b}=\beta_{2} \ell_{a} \ell_{b}-\lambda_{2} \tilde{x}_{a} \tilde{x}_{b}-\mu_{2} \tilde{Y}_{a} \tilde{Y}_{b}
\end{aligned}
$$

- $\left(\ell^{a}, n^{a}, x^{a}, y^{a}\right)$ is a half-null tetrad. $\left(\tilde{x}^{a}, \tilde{y}^{a}\right)$ is an orthonormal dyad dependent on $\left(x^{a}, y^{a}\right)$:
$\tilde{x}^{a}=\cos \theta x^{a}+\sin \theta y^{a} \quad \tilde{y}^{a}=-\sin \theta x^{a}+\cos \theta y^{a}$

Potential Counterexample 1

- $\Omega \& \wedge$ are Segré type [211] with Ricci squares [2(11)]

$$
\begin{aligned}
& \Omega_{a b}=\beta_{1} \ell_{a} l_{b}-\lambda_{1} x_{a} x_{b}-\mu_{1} Y_{a} Y_{b} \\
& \Lambda_{a b}=\beta_{2} \ell_{a} l_{b}-\lambda_{2} \tilde{x}_{a} \tilde{x}_{b}-\mu_{2} \tilde{Y}_{a} \tilde{Y}_{b}
\end{aligned}
$$

- $\left(\ell^{a}, n^{a}, x^{a}, y^{a}\right)$ is a half-null tetrad. $\left(\tilde{x}^{a}, \tilde{y}^{a}\right)$ is an orthonormal dyad dependent on $\left(x^{a}, y^{a}\right)$:

$$
\tilde{x}^{a}=\cos \theta x^{a}+\sin \theta y^{a} \quad \tilde{y}^{a}=-\sin \theta x^{a}+\cos \theta y^{a}
$$

- Vacuum conditions:
$\lambda_{1} \mu_{1}+e \lambda_{2} \mu_{2}=0, \quad\left(\lambda_{1}+\mu_{1}\right) \beta_{1}+e\left(\lambda_{2}+\mu_{2}\right) \beta_{2}=0$ Commutator: $\quad C_{a b}=\left(\lambda_{1}-\mu_{1}\right)\left(\lambda_{2}-\mu_{2}\right) \sin 2 \theta x_{[a} Y_{b]}$ Riemann tensor is Petrov type N :

$$
\begin{aligned}
R_{c d}^{a b}= & 4\left(\beta_{1} \lambda_{1}+e \beta_{2}\left(c^{2} \lambda_{2}+s^{2} \mu_{2}\right)\right) \ell^{[a} x^{b]} \ell_{[c} x_{d]} \\
& -4\left(\beta_{1} \mu_{1}+e \beta_{2}\left(s^{2} \lambda_{2}+c^{2} \mu_{2}\right)\right) \ell^{[a} y^{b]} \ell_{[c} y_{d]} \\
& -4 e \operatorname{cs} \beta_{2}\left(\lambda_{2}-\mu_{2}\right)\left(\ell^{[a} x^{b]} \ell_{[c} y_{d]}+\ell^{[a} y^{b]} \ell_{[c} x_{d]}\right)
\end{aligned}
$$

Potential Counterexample 2

- $\Omega \& \wedge$ are Segré type [211] with Ricci squares [(11)11]

$$
\begin{aligned}
& \Omega_{a b}=\lambda_{1}\left(\ell_{a} n_{b}+n_{a} \ell_{b}\right)+\beta_{1} \ell_{a} \ell_{b}-\mu_{1}\left(x_{a} x_{b}-y_{a} y_{b}\right) \\
& \Lambda_{a b}=\lambda_{2}\left(\ell_{a} n_{b}+n_{a} \ell_{b}\right)+\beta_{2} n_{a} n_{b}-\mu_{2}\left(x_{a} x_{b}-y_{a} y_{b}\right)
\end{aligned}
$$

Potential Counterexample 2

- $\Omega \& \Lambda$ are Segré type [211] with Ricci squares [(11)11]

$$
\begin{aligned}
& \Omega_{a b}=\lambda_{1}\left(\ell_{a} n_{b}+n_{a} \ell_{b}\right)+\beta_{1} \ell_{a} \ell_{b}-\mu_{1}\left(x_{a} x_{b}-y_{a} y_{b}\right) \\
& \Lambda_{a b}=\lambda_{2}\left(\ell_{a} n_{b}+n_{a} \ell_{b}\right)+\beta_{2} n_{a} n_{b}-\mu_{2}\left(x_{a} x_{b}-y_{a} y_{b}\right)
\end{aligned}
$$

- Vacuum conditions: $\quad e=-1, \quad \lambda_{1}=\lambda_{2}, \quad \mu_{1}=\mu_{2}$
- Commutator:

$$
C_{a b}=2 \beta_{1} \beta_{2} \ell_{[a} n_{b]}
$$

- Riemann tensor is Petrov type I and so excluded by Brans' theorem:

$$
\begin{aligned}
R_{c d}^{a b}= & -4 \beta_{1} \mu\left(\ell^{[a} x^{b]} \ell_{[c} x_{d]}-\ell^{[a} y^{b]} \ell_{[c} y_{d]}\right) \\
& +4 \beta_{2} \mu\left(n^{[a} x^{b]} n_{[c} x_{d]}-n^{[a} y^{b]} n_{[c} y_{d]}\right)
\end{aligned}
$$

- $R^{a b c d} R_{a b c a}=-32 \beta_{1} \beta_{2} \mu^{2}$

All Potential Counterexamples

Ω	Λ	Ricci Square	$C_{a b}$	Petrov Type
$[31]$	$[31]$	$[(21) 1]$	$=0$	N
$[31]$	$[211]$	$[(21) 1]$	null	0
$[211]$	$[211]$	$[(11) 11]$ or $[(11)(11)]$	ST or NS	I
$[211]$	$[211]$	$[2(11)]$	SS	N
$[211]$	$[1111]$	$[(11) 11]$ or $[(11)(11)]$	ST or NS	0
$[211]$	$[Z \bar{Z} 11]$	$[(11) 11]$ or $[(11)(11)]$	ST or NS	0
$[1111]$	$[Z \bar{Z} 11]$	$[(11) 11]$ or $[(11)(11)]$	ST	0
$[Z \bar{Z} 11]$	$[Z \bar{Z} 11]$	$[(11) 11]$	ST	I
$[Z \bar{Z} 11]$	$[Z \overline{1} 11]$	$[Z \bar{Z}(11)]$	SS	I
$[Z \bar{Z} 11]$	$[Z \bar{Z} 11]$	$[(11)(11)]$	NS	I
$[1111]$	$[1111]$	$[(11) 11]$	ST	I
$[1111]$	$[1111]$	$[11(11)]$	SS	I
$[1111]$	$[1111]$	$[(11)(11)]$	NS	I

Type of the bivector $C_{a b}$: \quad ST = simple timelike, SS = simple spacelike, NS = non-simple

Summary

- Doubt is cast on a result of Yakupov. Many possible counterexamples are derived.

Summary

- Doubt is cast on a result of Yakupov. Many possible counterexamples are derived.
- In several cases the Riemann tensor vanishes. There (presumably) exist many embeddings with torsion of a flat 4-D spacetime in a flat 6-D flat manifold.

Summary

- Doubt is cast on a result of Yakupov. Many possible counterexamples are derived.
- In several cases the Riemann tensor vanishes. There (presumably) exist many embeddings with torsion of a flat 4-D spacetime in a flat 6-D flat manifold.
- All, but one, of the remaining cases are Petrov type I and are excluded by Brans' theorem.

Summary

- Doubt is cast on a result of Yakupov. Many possible counterexamples are derived.
- In several cases the Riemann tensor vanishes. There (presumably) exist many embeddings with torsion of a flat 4-D spacetime in a flat 6-D flat manifold.
- All, but one, of the remaining cases are Petrov type I and are excluded by Brans' theorem.
- The remaining case is the sole surviving possible counterexample. Work is ongoing to see if it satisfies the required integrability conditions. It is type N .

Summary

- Doubt is cast on a result of Yakupov. Many possible counterexamples are derived.
- In several cases the Riemann tensor vanishes. There (presumably) exist many embeddings with torsion of a flat 4-D spacetime in a flat 6-D flat manifold.
- All, but one, of the remaining cases are Petrov type I and are excluded by Brans' theorem.
- The remaining case is the sole surviving possible counterexample. Work is ongoing to see if it satisfies the required integrability conditions. It is type N .
- There are no examples of Petrov type III and so Yakupov's second theorem appears to be valid.

Summary

- Doubt is cast on a result of Yakupov. Many possible counterexamples are derived.
- In several cases the Riemann tensor vanishes. There (presumably) exist many embeddings with torsion of a flat 4-D spacetime in a flat 6-D flat manifold.
- All, but one, of the remaining cases are Petrov type I and are excluded by Brans' theorem.
- The remaining case is the sole surviving possible counterexample. Work is ongoing to see if it satisfies the required integrability conditions. It is type N .
- There are no examples of Petrov type III and so Yakupov's second theorem appears to be valid.
- Yakupov's identity is shown to be a purely algebraic constraint derivable from the Gauss equation and vacuum conditions rather than an integrability condition derived from Codazzi equations etc..

A Simple Proof of Yakupov's Identity

- As the first step in his proof, Yakupov derived the following equations from the Codazzi equations using the Ricci identities:

$$
\begin{aligned}
& \Omega_{[b}^{e} R_{c d] e a}=\Omega_{a[b ; c d]}=2 e_{2} t_{[c ; d} \Lambda_{b] a} \\
& \Lambda_{[b}^{e} R_{c d] e a}=\Lambda_{a[b ; c d]}=-2 e_{1} t_{[c ; d} \Omega_{b] a}
\end{aligned}
$$

- However, we can derive these equations (with $t_{[a ; b]}$ replaced by the commutator $C_{a b}$) by substituting for $R_{\text {abca }}$ using the Gauss equation in the expressions $\Omega_{[b}^{e} R_{c d] e a} \& \Lambda_{[b}^{e} R_{c d] e a}$.
- The rest of the proof follows identical lines to Yakupov's (with $t_{[a ; b]}$ replaced throughout by the commutator $C_{a b}$)

