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Introduction and motivation

This morning theme:

Fundamental vs. Effective Approaches in Theoretical Gravity

How does my talk fit into this scheme?

Any fundamental approach to quantum gravity should be able to
explain the origin and meaning of the black hole microscopic de-
grees of freedom. (Also describe the appearance of objects that
behave like macroscopic black holes!)

The purpose of this talk is to

1 Explain how LQG describes the black hole d.o.f.’s

2 Argue that LQG provides a good model for BH entropy.

3 Show that LQG makes some intriguing predictions.
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A little bit of history

The study of black hole entropy is a natural testing ground for LQG

Some key steps:

Smolin (’95): black holes as inner boundaries in LQG, horizons and
Chern-Simons theories, quantum groups,...
Krasnov (’96-98): role of CS, spin networks, distinguishability,...
Rovelli (’96): combinatorial methods within LQG, distinguishability of
punctures, Bekenstein-Hawking law,...
Ashtekar, Baez, Corichi and Krasnov (’98-00): BH’s as isolated
horizons, Hamiltonian formulation, role of γ,...
Domagala, Lewandowski and Meissner (’04): reformulation of
combinatorial problems, precise counting,...
Corichi, D́ıaz Polo, F-Borja (’07): Entropy quantization.

Circa 1998 there was a reasonable description of BH’s within LQG.

Recent advances.
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black holes and isolated horizons

Non expanding horizons ∆: null, 3-dim submanifolds of (M, gab)
such that

1 They have the topology of S2 × R.
2 The expansion of any null normal qab∇a`b vanishes.
3 The Einstein field equations hold on ∆ with Tab satisfying the (mild)

condition that −T a
b`

b is a future directed, causal vector. (This is true
for minimally coupled matter fields.)

This definition ( ) guarantees that the area of ∆ is constant, there
is no matter flux through ∆, and the horizon geometry (qab,D) is
time-independent.
Isolated horizons: Non-expanding horizons with an –essentially
unique– null normal ` that is a symmetry of the horizon geome-
try (L`qab = 0 , [L`,D] = 0). It is a much weaker concept than
that of a Killing horizon (just the minimum necessary have the
laws of black hole mechanics and keep an infinite number of d.o.f.)
In particular it is a local concept (unlike event horizons).
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black holes and isolated horizons

1 Isolated horizons capture important features of BH physics (for in-
stance, 0th and 1st laws of BH thermodynamics).

0th law: The surface gravity κ of an isolated horizon is constant.

1st law: “Conservation of energy”

dE∆ =
κ

8πG
da∆ + ΩdJ∆ + ΦdQ∆

2 They are appropriate to model black holes in equilibrium without
requiring that the exterior geometry be stationary.

3 They can model rotating black holes or black holes with distorted
horizons.

4 They have interesting classical applications.
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black holes and isolated horizons

4 A “reduction” of general relativity consisting of spacetimes with iso-
lated horizons as inner boundaries admits a Hamiltonian descrip-
tion. This is a key first step towards quantization.

5 This idea is similar in spirit to the study of the quantization of
mini and midisuperspace models. A subset of the gravitational field
configurations is selected by imposing restrictions on the metrics.

Mini and midisuperspaces Symmetry requirement on the metrics.

Black holes  The allowed metrics must have an isolated horizon
that is also an inner boundary of spacetime.

6 According to the symmetries of the isolated horizon geometry they
are classified as

Type I: maximal symmetry corresponding to spherical geometry.
Type II: 2-dim symmetry group. Axi-symmetric
Type III: 1-dim symmetry group. The only symmetries are the
diffeomorphisms generated by the null normal `.

7 The 0th and 1st laws are satisfied by types I and II.
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prelude to quantization (classical model)

1 Consider a sector of GR consisting of space times with an inner bound-
ary which is a type I isolated horizon of fixed classical area aκ

Use real Ashtekar variables (Ai
a,E

a
i ) (SU(2) connection and triad).

Partially gauge fix SU(2) to U(1) by projecting in the internal direction
given by the (internal) vector r i , where r iE a

i =
√
| det q|r a (r a is the

unit normal to the 2-sphere S .)
The intrinsic geometry of ∆ is given by the pull-back of Ai ri =:W to S .

2 ∆ isolated horizon has two important consequences:
1 The boundary condition (Σi is the pull-back to S of ηabcE a

i η
ij and

F := dW ). It implies the reducibility of the pulled back connection

F = −2π

aκ
8πGγΣi ri

2 The symplectic form picks a U(1) Chern-Simons surface term

1

2π

aκ
4πγ`2

P

∮
d1W ∧ d2W

3 Constraints
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Quantum geometry of quantum horizons

Steps to quantization

1 Build the Hilbert space (describing both of surface and bulk quantum
d.o.f.)

Bulk Hilbert space

Surface Hilbert space

2 Implement the quantum boundary condition (qbc) to define Hkin.
3 Enforce the quantum constraints (à la Dirac, group averaging,...) to

define Hphys .

Gauss law.

Diffeomorphism constraint.

Hamiltonian constraint.

Define then the entropy and study its properties (dependence on the horizon
area...)
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The Hilbert space

1 We have two types of connections: a bulk SU(2) connection and a
surface U(1) connection

2 It is then natural to take a Hilbert space H = HV ⊗HS and consider
a kinematical subspace Hkin < HV ⊗HS .

3 The details of the choice for HV and HS are dictated by the need to
implement a quantum boundary condition.

Volume Hilbert space HV

HV is a subspace of the LQG Hilbert space L2(Ā, µAL) (we mode out
SU(2) gauge transformations that reduce to I on the horizon).

A suitable basis is defined by using spin networks (that may end at
S).Remember that spin networks are graphs with edges consisting of
analytic curves that meet at vertices. Edges are labeled by spins je
and vertices by intertwiners iv .

BH entropy: lessons from LQG J. Fernando Barbero G. (IEM-CSIC) ERE, September 6, 2010 9/30



The Hilbert space

Those spin networks with graphs piercing the horizon transversally (at
the so called punctures) play an special role. Important quantum
numbers are the jI ∈ Z/2 labels of their edges and the //mI =
−jI , . . . , jI components defined by the ri vector.
The bulk Hilbert space admits a convenient representation as an or-
thogonal sum:

Consider a finite set of points on S , P = {P1,P2, . . . ,Pn} labeled
by pairs of numbers (ji ,mi ), i = 1, . . . , n such that ji ∈ N/2 and
mi ∈ {−ji ,−ji + 1, . . . , ji}

HV =
⊕

(P,j,m)

HP,j,m
V

The sum is extended to all the possible subsets P (including ∅) and
(j ,m)-labelings. H∅  spin networks that do not pierce the horizon.

Each of the Hilbert spaces HP,j,m
V is spanned by spin networks such

that the edges piercing the horizon carry the labels (ji ,mi ).
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The Hilbert space

Surface Hilbert space HS

The appearance of a U(1) Chern-Simons surface term in the sym-
plectic structure forces us to impose a “pre-quantization condition”
on the classical horizon area aκ = 4πγ`2

Pκ (κ ∈ N) for consistency
if we take the Hilbert space of the U(1) Chern-Simon theory defined
on a punctured sphere.
HS admits a representation as an orthogonal sum:

Consider a finite sequence of points on S , ~P = (P1,P2, . . . ,Pn)
labeled by numbers bi ∈ Zκ, i = 1, . . . , n satisfying b1 + · · ·+bn = 0.

HS =
⊕
(~P,b)

H~P,bS

The sum is extended to all the possible sequences ~P and b-labelings.

(we introduce a 1-dim Hilbert space H~∅S for the empty sequence.)
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The Hilbert space

The Kinematical Hilbert space Hkin

We have to implement the quantum boundary condition in HV ⊗HS

(to take into account that S is a section of an isolated horizon ∆.)

(I⊗ e i
∫
R F̂︸ ︷︷ ︸

holonomies

)Ψ =
(

e−
2πi
aκ

8πGγ
∫
R(Σ̂·r)︸ ︷︷ ︸

fluxes

⊗I
)
Ψ

The solutions are orthogonal sums of HP,j ,m
V ⊗H~P,bS such that

1 The points in P = {P1, . . . ,Pn} coincide with the elements in the
sequence (P1, . . . ,Pn).

2 bi = −2mi (modκ) for i = 1, . . . , n.

Hkin =
⊕
~P,j ,m

HP,j ,m
V ⊗H

~P,b(m)
S
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Comments

1 The eigenvalues of the lhs and rhs of the qbc can be matched pre-
cisely if aκ is the pre-quantized value of the area introduced above
 non trivial space of solutions to the quantum matching conditions.

2 Classically the bulk fields determine the surface fields by continuity.
3 Quantum mechanically, distributional objects appear so there is no

continuity requirement. (Quantum configuration 6= classical config-
uration space.) This explains the appearance of independent surface
d.o.f. accounting for the BH entropy (a genuine quantum effect!)

4 There are two areas that play a role here:

The classical prequantized area aκ fixed for the isolated horizon.
The area eigenvalue of the bulk area operator associated to the
2-sphere S defining the horizon given by

AreaS = 8πγ`2
P

∑
I=punct.

√
jI (jI + 1)

Notice that spin networks are eigenstates of the area operator.
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quantum constraints

The physical states of Hphys are solutions to the quantized constraints:

1 Gauss law: The physical states must be SU(2) invariant.
2 Diffeomorphism constraint: Diffeos act non-trivially on the surface

and volume states but the full physical state is invariant. The only
thing that matters is the number of punctures but not their location.

3 Hamiltonian constraint: It does not restrict the surface states be-
cause functional differentiability of this constraint in the classical the-
ory demands that the lapse N is zero on S . (However, one has to
assume the existence of some solutions to it in HV for every choice
of (j ,m)).

Hphys =
⊕
j ,m

Hb(m),j ,m

The area assigned to S by the bulk geometry is controlled by the j ’s.
The intrinsic horizon degrees of freedom are represented by the b’s.
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Defining black hole Entropy

Consider the Hilbert space of “black hole states”

|(m1, j1, . . . ,mn, jn), the rest of the graph〉V ⊗ |(b1, . . . , bn)〉S , n ∈ N0 ,

with bi ≡ −2mi (modκ) , for i = 1, . . . , n .

Introduce an area interval [aκ− δ, aκ + δ] with a δ of the order of `2
P .

The entropy is computed by tracing out the bulk degrees of freedom
to get a density matrix that describes a maximal entropy mixture
of surface states with area eigenvalues in [aκ − δ, aκ + δ].

This amounts to counting the number of allowed lists (b1, . . . , bn)
of non-zero elements of Zκ satisfying b1 + · · · + bn = 0, such that
bi = −2mi (modκ) for some permissible list of spin components ~m.

Here permissible means that there exists a list of non-vanishing spins
(j1, . . . , jn) such that each mi is a spin component of ji and

aκ − δ ≤ 8πγ`2
P

n∑
i=1

√
ji (ji + 1) ≤ aκ + δ.
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another way to get black hole entropy
(Domagala-Lewandowski)

The entropy S of a quantum horizon of the classical area a according to
Quantum Geometry and the Ashtekar-Baez-Corichi-Krasnov framework is

S≤(a) = logn(a),

where n(a) is 1 plus the number of all finite sequences ~m := (m1, . . . ,mn)
of non-zero elements of 1

2Z, such that the following equality (the
projection constraint) and inequality are satisfied:

n∑
i=1

mi = 0,
n∑

i=1

√
|mi |(|mi |+ 1) ≤ a

8πγ`2
P

where γ is the Immirzi parameter of Quantum Geometry.

(Easier to use in practice.) It extends the entropy to arbitrary values of the
area. Let us see what we get if we plot entropy versus area...
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plotting entropy versus area
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P
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plotting entropy versus area

1 The entropy is plotted for each area eigenvalue for small black holes.
For some of them it is zero because there are no solutions to the
projection constraint.

2 The expected linear growth as a function of the area is observed (see
the classical papers on the subject!)

3 The Immirzi parameter γ = 0.274 · · · has to be chosen to get the
1/4 coefficient in the area law (the slope is controlled by γ).

4 However, this choice is universal (it works for other types of black
holes modeled as type II isolated horizons (rotating and distorted)),
Maxwell fields, dilatonic black holes, non minimally coupled matter,...

5 An unexpected behavior appears! It looks as if there is an effective
entropy quantization (Corichi, D́ıaz Polo, F. Borja, Agulló). This
is a genuinely new phenomenon!)

6 The step size remains constant despite the fact that the separation
between consecutive area eigenvalues shrinks very quickly!
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Number theoretic and combinatorial methods

What does this mean?
Is it possible to explain this new behavior?
Does it persist for macroscopic black holes?

The nature of the combinatorial problems (in particular in the DL form)
is such that it is possible to develop counting methods to:

1 Characterize the degeneracies in the area eigenvalues by using dio-
phantine equations (the Pell equation x2 − py 2 = 1 appears due
to the terms involving

√
j(j + 1) in the area eigenvalues.)

2 Precisely obtain the number of black hole configurations contribut-
ing to the entropy for each value of the black hole area (this means
solving an inequality and the projection constraint).

Furthermore, it is possible to code this information in generating func-
tions and use them to study the asymptotic behavior of the entropy.
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Generating functions

The black hole generating function is

G (z , x1, x2, . . . ) =

(
1−

∞∑
i=1

∞∑
α=1

(zk i
α + z−k

i
α)x

y i
α

i

)−1

In the previous formula the variables xi are associated to squarefree
integers pi and z is an extra variable needed to account for the
projection constraint.

The numbers (k i
α, y

i
α) are obtained from the solutions to the Pell

equation x2 − piy
2 = 1 associated to the squarefree integer pi .

The coefficient of the term z0xq1
1 · · · x

qi
i · · · gives the number of se-

quences ~m satisfying the projection constraint and such that 2a =∑
i qi
√

pi (in units such that 4πγ`2
P = 1)

Despite the apparent infinite number of terms, for a given value of a
only finite numbers of variables and terms are needed.
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Generating functions

This generating function solves the problem of counting the number
of sequences ~m such that

2
∑
I

√
|mI |(|mI |+ 1) = a ,

∑
I

mI = 0

for a given value of the area a.
In order to take into account the inequality in the definition of the
area one has to introduce a Laplace-Fourier transform representation.

eS≤(a) =
1

(2π)2i

∫ 2π

0

∫ x0+i∞

x0−i∞
s−1
(

1− 2
∞∑
k=1

e−s
√

k(k+2) cosωk
)−1

easds dω

This is an exact expression for the entropy. It allows, in particular,
to write down the equation that γ must satisfy to recover the 1/4
factor of the Bekenstein-Hawking law.
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Generating functions

The position of the poles of the integrand for ω = 0 determines
the growth of the entropy as a function of the area (the one with the
largest real part). However, a very interesting phenomenon happens:
the real parts of these poles accumulate.
This is a necessary condition to eventually explain the entropy quan-
tization for large areas.

The formula gives a (γ-independent!) logarithmic correction

−1

2
log

a

`2
P

By carefully modifying the generating functions it is possible to isolate
parts of the black hole degeneracy spectrum (steps). An example:(

1−
∞∑
i=1

∞∑
α=1

ν3k i
α+2(zk i

α + z−k
i
α)x

y i
α

i

)−1
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Confronting other approaches

Some other approaches to understand BH entropy

Euclidean methods and partition functions (Gibbons, Hawking).

Entanglement entropy between degrees of freedom inside and outside
the horizon (Bombelli, Srednicki, Sorkin).

Black hole entropy is a conserved quantity connected with the diffeo-
morphism invariance of the gravitational action. (Wald)

Black hole entropy is thermal entropy of the gas of quanta constitut-
ing the thermal atmosphere of the black hole. (Thorne and Zurek,
’t Hooft). This is related to the entanglement entropy.

Black hole entropy counts the number of states or excitations of a
fundamental string. (Strominger and Vafa [1996], Susskind [1993],
Bowick, Smolin and Wijewardhana [1987]).

Black hole entropy is equivalent to the thermal entropy of the radia-
tion residing on the boundary of the spacetime containing the black
hole. (Maldacena, Witten).
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Confronting other approaches

Shape of the horizon (Sorkin, 1996).

Entropy from non-local field theories (Padmanabhan).

Causal sets (Dou) 1999

Sakharov’s theory of induced gravity (the dynamical aspects of gravity
arise from the collective excitations of massive fields with constraints
introduced to cancel divergences and ensure that Λ = 0.
Mukhanov, Bekenstein,...
...
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Strings

At low energies they reduce to a 10-dim SUGRA theory (that involves
a metric and can have black holes).

One can consider a weak coupling limit of string theory where per-
turbative computations can be performed.
There are ways to map weak coupling states with black hole solutions
(because there are conserved charges if D-branes are introduced).

In the weak coupling limit one can then use methods of standard
statistical mechanics to get the entropy and then map.

For certain classes of extremal (or almost extremal) black holes
one gets S(A) = A/4 and subleading corrections that agree with the
Wald formula for GR extensions. Greybody factors can be obtained.
There is a correspondence principle put forward by Horowitz and
Polchinski that leads to the proportionality of entropy and areas for
generic black holes (but does not give the 1/4 of the area law).

There is progress in computing the entropy for “more physical” black
holes (Horowitz, Emparan, Roberts,...).
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Other approaches and points of view

The Universality enigma (Carlip): “The Bekenstein-Hawking entropy
can be computed entirely within the framework of quantum field theory
in a fixed curved background. It is hard to see how such a calculation
could “know” the details of a microscopic gravitational theory. Rather,
it seems more likely that some unknown universal mechanism forces
any suitable quantum theory to give the standard result”

Strominger observed that the Cardy formula can be used to compute
the entropy and get the Bekenstein-Hawking formula (2+1 black holes).

Carlip has generalized this approach for arbitrary black holes by care-
fully looking at the symmetries of the horizons.

The Cardy formula [that comes from 2-dimensional conformal field the-
ory] gives the correct Bekenstein-Hawking entropy independent of the
details of the black hole considered.
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Other approaches and points of view

Logarithmic corrections to the entropy are sensitive to details of
the formulation (stressed by many authors in different contexts and
suggested by Kaul, Majumdar, Engle, Noui,Perez,...)

Conformal field theory arguments can explain the “universality”. In
particular Carlip has found that the logarithmic correction

−3

2
log

a

`2
P

appears generically. (String theories give this type of correction.)

”Microscopic states responsible for black hole entropy can thus be
viewed as ”would-be pure gauge” states that become physical because
the symmetry is altered by the requirement that a horizon exists”.
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Summary

Black hole entropy in LQG

BH’s in LQG are modeled with the help of isolated horizons.
A Hamiltonian description is available  quantization.
Quantization is performed in a LQG-like Hilbert space.
An important role is played by a CS theory defined on the horizon.
BH entropy is defined according to the standard rules of quantum
statistical mechanics (density matrix).

Main results about black hole entropy

The Bekenstein-Hawking law is recovered.
Logarithmic corrections can be explicitly obtained and understood.

Interesting details in the behavior of the entropy S(A) as a function
of the horizon area. Suggestive connections with

Bekenstein-Mukhanov proposals (equally spaced area spectrum).
Conformal theories (Carlip, Kaul-Majumdar,...)
. . .
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Conclusions

The identification of the microscopic BH dof in LQG relies on a very
specific proposal to define the sector of the theory that one quantizes
(by using isolated horizons).

It makes use of techniques introduced in LQG and some features of
the full dynamics of GR but it is quite generic (independent of many
dynamical details).

A central issue is the identification of the quantum boundary con-
dition and its non-trivial quantization.

Quantum geometry plays an important role (area operator).

The combinatorial problems associated with the counting of bh
states can be solved in detail. In particular the detailed behavior of
the entropy as a function of the area can be studied.
Even if you consider the present approach to BH entropy in LQG as a
model (that can be improved once the complete theory is available)
in my opinion it is too rich to be dismissed. It may well be the
basis for a deeper understanding of black hole physics.
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