

<u>Milli-Hertz Gravitational Waves:</u> <u>LISA and LISA PathFinder</u>

Alberto Lobo ICE (CSIC) & IEEC

ERE-2010, Granada 9-ix-2010

A. Lobo, milli-Hz GWs and LISA

1

Preamble: PSRB 1913+16

Rusell A. Hulse

Joseph H. Taylor, Jr

ERE-2010, Granada 9-ix-2010

Preamble: PSRB 1913+16

The binary pulsar 1913+16:

Discovered:	Arecibo 1974
Tracking:	~30 years

GR prediction:

$$\dot{E}_{\rm GW} = -\frac{G}{5c^5} \ddot{Q}_{ij} \ddot{Q}_{ij}$$

Observational *result*:

$$\frac{\dot{P}_{\text{measured}}}{\dot{P}_{\text{theory}}} = 1.0013 \pm 0.0021$$

ERE-2010, Granada 9-ix-2010

Some PSRB 1913+16 parameters

Character	Parameter	Value			
Keplerian	Orbital period	P = 7.7519387743 (1) hours			
	Eccentricity	e = 0.6171338 (4)			
	Projected semi-major axis	$a \sin i = 2.3417725$ (8) light sec			
Post-Keplerian	Periastron precession	$\langle \dot{\varphi} \rangle$ = 4.226595 (5) deg/year			
	Time dilation + grav. redshift	$\gamma = 0.0042919$ (8) sec			
	Orbital period decay rate	$\dot{P} = -2.4056 \pm 0.0051 \times 10^{-12}$			
General Relativity	Pulsar mass	$m_p = 1.4414 (2) M_{\odot}$			
	Companion mass	$m_c = 1.3867 (2) M_{\odot}$			
	Orbit inclination	$\sin i = 0.73 (4)$			

ERE-2010, Granada 9-ix-2010

PSRB 1913+16 consequences

- PSRB 1913+16 is a strongly relativistic system
- GR *correctly predicts <u>all</u>* post-Keplerian parameters
 - Gravitational redshift and time dilation
 - Perihelion advance
 - Shapiro time delays
 - Emission of Gravitational Wave Radiation

GWs from the binalry pulsar:

- Compelling evidence of their existence,
- Not indirect, but incomplete
- GW emission frequency: ~ 70 μHz
 Current GW emission amplitude: ~ 2×10⁻²³
- Calculated lifetime: ~ 300,000,000 years

GW Astronomy

Therefore:

- Relevant GW sources are *far* from Earth
- Detection poses a formidable problem

Benefit of detection:

• GWs carry <u>undistorted news</u> from source <u>interiors</u>

GW sources are often classified in four groups:

- *Burst*, or short duration signals
- *Periodic*, or long duration signals
- Stochastic backgrounds
- Other, unforeseen signals

GW detection will thus spawn a *new branch* of Astronomy:

GW Astronomy

ERE-2010, Granada 9-ix-2010

GW telescopes: basics

Free test masses at rest before *GW* comes:

Incoming GW causes *relative distance* changes:

$$l(t) = l_0 + \delta l = l_0 \left[1 + \frac{1}{2}h(t) \right]$$

where

$$h(t) = \left[h_{\times}(\boldsymbol{x}_{0}, t)\cos(2\boldsymbol{\varphi}) + h_{+}(\boldsymbol{x}_{0}, t)\sin(2\boldsymbol{\varphi})\right]\sin^{2}\theta$$

GW amplitudes are measured in <u>metres/metre</u>. For envisaged sources, $h \sim 10^{-18} - 10^{-26}$

ERE-2010, Granada 9-ix-2010

GW telescopes: basics

Because

$$\delta l(t) = \frac{1}{2} l_0 h(t)$$

detection is simpler when l_0 is very large.

In the case of interferometric detectors, this entails the use of very long baselines.

But length has impact on the GW frequencies to which the antenna is most sensitive, too:

$$\delta \phi = 2 \frac{\omega_{\text{laser}}}{\Omega_{\text{GW}}} h_0 \sin \frac{\Omega_{\text{GW}} L}{2 c} , \quad \Omega_{\text{GW}} \ll \omega_{\text{laser}}$$

Hence optimum arm-length: $L = \frac{\lambda_{\text{GW}}}{4}$

ERE-2010, Granada 9-ix-2010

GW telescopes: Earth vs. space based

Ground based (VIRGO & LIGO)	Space based (LISA)
GW freq 10 Hz < f < 2 kHz	GW freq 0.1 mHz < 1 Hz
Main signals are pulsed	Long (years) duration signals
Rates uncertain	Ibid., but some signals guaranteed
SNRs tight	SNRs can be as high as 1000
Data analysis very complex	Data analysis (hopefully) less complex
Data archives huge (because of high freq)	Data archives much more manageable
No hardware limits	Very stringent hardware constraints
Highly serviceable, upgradable	Not serviceable, minor upgrades
Long lifetime	Reduced lifetime

These complement each other in a common objective

ERE-2010, Granada 9-ix-2010

ERE-2010, Granada 9-ix-2010

12-d13 12-d23 13-d23 ļ ļ and the second second i, **___** 21500 000 23500 24000 2450 Days since 1950. (21915. is 2010/01/01)

Difference in Distance (km)

LISA: Differences between Distances (d12-d13, d12-d23, d13-d23)

LISA: Velocity (LoS) (v12, v13, v23)

LISA verification binaries

	Class	Source	$\mathrm{Dist/pc}$	f/mHz	M_1/M_{\odot}	M_2/M_{\odot}	$\tau/10^8 \mathrm{y}$	$h/10^{-22}$
	WD+WD	${ m WD}0957666$	100	0.38	0.37	0.32	2	4
		$WD \ 1101 + 364$	100	0.16	0.31	0.36	20	2
		WD 1704 + 481	100	0.16	0.39	0.56	13	4
		$_{\rm WD2331+290}$	100	0.14	0.39	>0.32	$<\!30$	>2
	WD+sdB	${ m KPD}0422{+}4521$	100	0.26	0.51	0.53	3	6
		$\mathrm{KPD}1930{+}2752$	100	0.24	0.50	0.97	2	10
Am CVn	${\rm Am}\; {\rm CVn}$	RXJ0806.3+1527	300	6.2	0.4	0.12		4
		$_{\rm RXJ1914+245}$	100	3.5	0.6	0.07	_	6
	KUV05184-0939	1000	3.2	0.7	.092	_	0.9	
	${ m AMCVn}$	100	1.94	0.5	.033	_	2	
		HP Lib	100	1.79	0.6	0.03	_	2
		CRBoo	100	1.36	0.6	0.02	_	1
		V803 Cen	100	1.24	0.6	0.02	_	1
		CP Eri	200	1.16	0.6	0.02	_	0.4
		GPCom	200	0.72	0.5	0.02	_	0.3
	LMXB	4U 1820-30	8100	3.0	1.4	< 0.1	_	0.2
		4U1620-67	8000	0.79	1.4	< 0.03	_	.06
	WUMa	CCCom	90	0.105	0.7	0.7	_	6
ERE-2010, Granada 9-ix-2010		A. Lobo, mi	illi-Hz GW	s and LISA				

NGC 6240

Binary system of SMBHs

Hubble-Spitzer, optical + IR

X-ray, Chandra

ERE-2010, Granada 9-ix-2010

Detectability of SMBH binaries

IEEC

Extreme mass-ratio inspiral

Requires Numerical Relativity, Iower LISA band

ERE-2010, Granada 9-ix-2010

A. Lobo, milli-Hz GWs and LISA

IEEC

ERE-2010, Granada 9-ix-2010

The LISA science-craft

ERE-2010, Granada 9-ix-2010

The LISA core instruments

There are two subsystems of major conceptual relevance:

- The *drag-free* subsystem
- The optical metrology subsystem

Each of these has in turn various other important subsystems:

- Drag-free:
 - TM position sensors (capacitive)
 - Micro-thruster actuators
 - Caging mechanisms
- Optical Metrology:
 - Laser assembly
 - Optical bench
 - Phasemeter

Time delay interferometry

LISA's laser (1.064 $\mu m)$ is cavity-stabilised to have frequency fluctuations below

 $S_{f}^{1/2}$ < 30 Hz/ \sqrt{Hz}

within the MBW.

If two interferometer arms have mismatched lengths by ΔL then laser frequency fluctuations δf mimic TM displacements δx :

$$\delta x = \frac{\delta f}{f} \Delta L$$

LISA is required to have a displacement noise below 10 pm/ \sqrt{Hz} , hence ΔL should be kept below $\Delta L < 100$ m.

ERE-2010, Granada 9-ix-2010

Time delay interferometry

TDI is a **post-processing technique** for removing (at least) laser frequency noise.

This is done by defining (a wealth of) *TDI variables* which contain no frequency noise, yet retain GW signals:

Time delay interferometry

Let $\phi(t)$ be phase at the beam splitter (vertex). Then, e.g.,

- In arm 1: $\phi_1(t) = \phi(t 2L_1) \phi(t)$
- In arm 2: $\phi_2(t) = \phi(t 2L_2) \phi(t)$

Off-line, the following TDI variable can be constructed:

$$X(t) = [\phi_2(t - 2L_1) - \phi_2(t)] - [\phi_1(t - 2L_2) - \phi_1(t)]$$

which is readily seen to be free of any phase noise, while still containing (GW) signals.

There are more TDI combinations, but a strong requirement is **precise knowledge of arm-lenghs** at the given times.

ERE-2010, Granada 9-ix-2010

LISA is really challenging...

...and expensive!!

ERE-2010, Granada 9-ix-2010

LISA PathFinder

1. One *LISA* arm is *squeezed* to 30 centimetres:

LTP Objectives :

- Drag-free
- Interferometry
- Diagnostics
- TM charging
- Telemetry
- Data processing

2. *Relax sensitivity* by one order of magnitude, also in band:

$$S_{\Delta a}(\omega) \le 3 \times 10^{-14} \left[1 + \left(\frac{\omega/2\pi}{3 \text{ mHz}} \right)^2 \right] \text{ms}^{-2} \text{Hz}^{-1/2} , \quad 1 \text{ mHz} \le \omega/2\pi \le 30 \text{ mHz}$$

ERE-2010, Granada 9-ix-2010

- Lagrange L1
- Travel time: ~3 months
- Mission lifetime: ~6 months

ΙΕΕϹ

IEEC

A. Lobo, milli-Hz GWs and LISA

ΙΕΕϹ

IEEC

A. Lobo, milli-Hz GWs and LISA

IEEC

ERE-2010, Granada 9-ix-2010

A. Lobo, milli-Hz GWs and LISA

ΙΕΕϹ

A. Lobo, milli-Hz GWs and LISA

IEEC

ΙΕΕϹ

IEEC VASELINA VIANCA F.U.

ERE-2010, Granada 9-ix-2010

A. Lobo, milli-Hz GWs and LISA

The LPF optical bench

ERE-2010, Granada 9-ix-2010

Spanish contributions to LPF (IEEC-ICE)

IEEC⁹ <u>The LPF Spacecraft and propulsion module</u>

Final remarks

- GWs are a unique and unexplored new way to scrutinise the Universe
- GWs are the last open issue in GR so far
- GW detection is a very challenging problem: almost 50 years since first attempts by Joe Weber
- LISA has received substantial support from the Astro-2010 Decadal Survey last August-13
- LISA strongly depends on success of LISA PathFinder, scheduled for a 2013 launch. System integration begins January 2011.
- Important parts of LPF will be transferred to LISA, including:
 - Local metrology system
 - Most of LPF GRS
 - Diagnostics items

while other parts need feasible improvement with affordable effort. Some of these are already under study, while the mission formulation (Astrium Germany) is essentially complete

End of presentation

ERE-2010, Granada 9-ix-2010