▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Einstein-Klein-Gordon-Friedrich system and the non-linear stability of scalar field Cosmologies

Artur Alho, Filipe C. Mena and Juan A. Valiente Kroon

CMAT - Mathematical Physics Group

Queen Mary - Relativity Group

ERE 2010, Granada - September 10th, 2010 arxiv:1006.3778[gr-qc]

Asymptotic stability of spatially homogeneous and isotropic spacetimes

The Approach

- Question: do small perturbations of a given solution asymptotically decay to the background solution?
- Within this approach: analyse decay of non-linear perturbations from the knowledge of linear perturbations.

Hyperbolic reduction of EFEs: FOSH systems

- Hyperbolic reductions: The Cauchy problem for the EFEs can be reduced to questions about the Cauchy problem for hyperbolic equations —gauge fixing
- EFEs in vacuum as a *first-order quasi-linear symmetric hyperbolic system* –(H. Friedrich CQG96)

$$\mathbf{A}^{0}\partial_{t}\mathbf{u}-\mathbf{A}^{j}(\mathbf{u})D_{j}\mathbf{u}=\mathbf{B}(\mathbf{u})\mathbf{u},$$

• Generalization to the Einstein-Euler system using Lagrangian description of the fluid flow and Fermi transport –(H. Friedrich PRD98)

Cosmological context

- Exponential decay of small non-linear perturbations of FLRW backgrounds –(O. Reula PRD99)

Asymptotic stability of spatially homogeneous and isotropic spacetimes

The Approach

- Question: do small perturbations of a given solution asymptotically decay to the background solution?
- Within this approach: analyse decay of non-linear perturbations from the knowledge of linear perturbations.

Hyperbolic reduction of EFEs: FOSH systems

- Hyperbolic reductions: The Cauchy problem for the EFEs can be reduced to questions about the Cauchy problem for hyperbolic equations —gauge fixing
- EFEs in vacuum as a *first-order quasi-linear symmetric hyperbolic system* –(H. Friedrich CQG96)

$$\mathbf{A}^0 \partial_t \mathbf{u} - \mathbf{A}^j(\mathbf{u}) D_j \mathbf{u} = \mathbf{B}(\mathbf{u}) \mathbf{u},$$

• Generalization to the Einstein-Euler system using Lagrangian description of the fluid flow and Fermi transport –(H. Friedrich PRD98)

Cosmological context

- Exponential decay of small non-linear perturbations of FLRW backgrounds –(O. Reula PRD99)

Asymptotic stability of spatially homogeneous and isotropic spacetimes

The Approach

- Question: do small perturbations of a given solution asymptotically decay to the background solution?
- Within this approach: analyse decay of non-linear perturbations from the knowledge of linear perturbations.

Hyperbolic reduction of EFEs: FOSH systems

- Hyperbolic reductions: The Cauchy problem for the EFEs can be reduced to questions about the Cauchy problem for hyperbolic equations —gauge fixing
- EFEs in vacuum as a *first-order quasi-linear symmetric hyperbolic system* –(H. Friedrich CQG96)

$$\mathbf{A}^0 \partial_t \mathbf{u} - \mathbf{A}^j(\mathbf{u}) D_j \mathbf{u} = \mathbf{B}(\mathbf{u}) \mathbf{u},$$

• Generalization to the Einstein-Euler system using Lagrangian description of the fluid flow and Fermi transport –(H. Friedrich PRD98)

Cosmological context

- Exponential decay of small non-linear perturbations of FLRW backgrounds –(O. Reula PRD99)

Scalar field and Klein-Gordon equation

• Scalar field $\phi \in \mathcal{C}^{\infty}(\mathcal{M})$. Energy-momentum tensor:

Fix the vector-field

Scalar field

$$\boldsymbol{\psi} \equiv \alpha \mathbf{e}_0 \Rightarrow \psi^{\boldsymbol{a}} = \alpha \delta_0^{\boldsymbol{a}}$$

and $\|\boldsymbol{\psi}\|^2 = -\alpha^2 \Rightarrow \alpha = \pm \sqrt{-\|\boldsymbol{\psi}\|^2}.$

• For a future-oriented ψ , we must choose α to be positive. In a coordinate basis:

$$\psi^{\mu} = \alpha \mathbf{e_0}^{\mu}, \quad \mathbf{e_0}^{\mu} = \frac{\nabla^{\mu} \phi}{\sqrt{-\|\boldsymbol{\psi}\|^2}}$$

• The divergence of the stress-energy tensor gives the evolution equation:

$$N^{b}\left(\nabla^{a}T_{ab}\right)=0 \Rightarrow \mathcal{L}_{\mathbf{e}_{0}}\alpha+\chi\alpha=\frac{d\mathcal{V}}{d\phi}$$

▲□▶▲□▶★≣▶★≣▶ = ● ● ●

Lagrangian description and Fermi transport

• The Lagrangian description: the timelike vector of the orthonormal frame follow the matter flow lines. Introduce coordinates (t, \mathbf{x}) such that

$$\mathbf{e}_0 = \boldsymbol{\partial}_t, \quad \boldsymbol{e}_0^{\ \mu} = \delta_t^{\mu}.$$

- With this choice: the lapse function is fixed to unity and $D^\mu \phi = 0$
- The timelike coframe in terms of the natural cobasis: ${m heta}^0 = {
 m d}t + eta_j {
 m d}{
 m x}^j$
- · Since we are using the scalar field to foliate the spacetime

$$D_{\mu}\phi = 0 \Rightarrow \beta_j = 0 \Rightarrow \chi_{[ab]} = 0$$

With this choice

$$\partial_t \phi(t) = \psi(\mathbf{x}, t) := N^a \psi_a = -\alpha < 0, \quad \text{for} \quad \phi > 0$$
 (1)

$$\partial_t \psi = -\psi \chi - \frac{d\mathcal{V}}{d\phi}.$$
 (2)

• The remaining frame components are choosen to be Fermi propagated along \mathbf{e}_0

$$\gamma^{a}_{b0} = 0$$

- * ロ * * 週 * * 目 * * 目 * ・ 目 ・ の < @

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stability approach

- Consider a sequence of smooth initial data $u^{\rm e}$ for the EFEs satisfying the constraints equations on a Cauchy hypersurface $\Sigma.$
- Depend continously on the parameter ε , such that, $\varepsilon \to 0$ renders the reference solution $\mathring{\bf u}$.
- Write the full solution to the EFEs as the Ansatz

$$\mathbf{u}^{\varepsilon} = \mathbf{\mathring{u}} + \varepsilon \mathbf{\widecheck{u}}^{\varepsilon},$$

 $\check{\mathbf{u}}^{\varepsilon}$ is a (non-linear) perturbation whose size is controlled by the parameter ε .

Also

$$\mathbf{B}(\mathbf{\mathring{u}} + \varepsilon \mathbf{\widecheck{u}}^{\varepsilon}) = \mathbf{\mathring{B}}(\mathbf{\mathring{u}}) + \varepsilon \mathbf{\widecheck{B}}(\mathbf{\widecheck{u}}, \varepsilon)$$

• Initial value problem for the non-linear perturbations:

$$\partial_t \breve{\mathbf{u}} = \begin{bmatrix} \mathring{\mathbf{A}}^j + \varepsilon \breve{\mathbf{A}}^j(\breve{\mathbf{u}},\varepsilon) \end{bmatrix} D_j \breve{\mathbf{u}} + \begin{bmatrix} \mathring{\mathbf{B}}(t) + \varepsilon \breve{\mathbf{B}}(\breve{\mathbf{u}},\varepsilon) \end{bmatrix} \breve{\mathbf{u}},$$

$$\breve{\mathbf{u}}(\mathbf{x},0) = \breve{\mathbf{u}}_0(\mathbf{x}),$$

EKGF s

Stability analysis

Definitions and Stability Theorem

- Stability results for the case where the coefficient of the non-principal part for the linearized system ($\varepsilon = 0$) is a constant matrix are well-known –(Kreiss & Lorenz Acta Numerica7 98).
- These follow from the existence of a negative real part of the eigenvalues for the non-principal part of the linearized system ($\varepsilon = 0$).
- These methods are easily generalized to systems of the type considered here where B is not constant but depends smoothly on time –(O. Reula PRD99).
- A procedure to analyse stability in the case of systems with vanishing eigenvalues has been given in -(Kreiss, Ortiz & Reula J. Diff. Eq. 98):

$$\mathbf{u}(\mathbf{x},t) = \mathbf{u}^{(0)}(t) + \mathbf{u}^{(\lambda)}(\mathbf{x},t), \quad \langle \mathbf{u}^{(0)}, \mathbf{u}^{(\lambda)} \rangle_{L^2(\mathbb{T}^n)} = 0$$

one can write the system as

$$\partial_t \mathbf{u}^{(0)} = \varepsilon \hat{\mathcal{Q}} \left(\check{\mathbf{A}}^j D_j + \check{\mathbf{B}}' \right) \mathbf{u}^{(\lambda)} \tag{3}$$

$$\partial_t \mathbf{u}^{(\lambda)} = \left(\mathbf{\mathring{A}}^j D_j + \mathbf{\mathring{B}}^\prime \right) \mathbf{u}^{(\lambda)} + \varepsilon \left(\hat{\mathcal{I}} - \hat{\mathcal{Q}} \right) \left(\mathbf{\check{A}}^j D_j + \mathbf{\check{B}}^\prime \right) \mathbf{u}^{(\lambda)}$$
(4)

with initial data $u^{(0)}(0)=u_0^{(0)}$ and $u^{(\lambda)}(0,x)=u_0^{(\lambda)}(x)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Klein-Gordon-Robertson-Walker spacetime background

Metric

$$ds^2 = -dt^2 + rac{a^2(t)}{1+rac{k}{4}r^2}\sum_{j=1}^3 dx_j^2,$$

• Metric is conformally flat:

$$E_{bd}=B_{bd}=0.$$

• Foliates the spacetime with the surfaces of constant t

$$\left(\chi^{ST}\right)_{bd} = \left(\chi^{A}\right)_{bd} = 0, \quad a_{c} = 0.$$

• $\chi(t) = 3\dot{a}/a$

,

• Friedmann constraint equation for a scalar field

$$\chi^{2}(t) = -\frac{k}{a^{2}} + \frac{2}{3}\psi^{2}(t) - 2\mathcal{V}(\phi),$$

• gauge conditions for the frame are satisfied if

$$\mathbf{e}_{0}^{\ \mu} = \delta_{t}^{\mu}, \quad \mathbf{e}_{a}^{\ \mu} = \left(1 + \frac{k}{4}r\right)a^{-1}\delta_{j}^{\mu}.$$

EKGF syst

Linearized system

- Compute $\left.\frac{d\check{u}^{\varepsilon}}{d\varepsilon}\right|_{\varepsilon=0}$ and drop all (non-linear) terms of coupled perturbations.
- Linearized system

$$\begin{aligned} \partial_t \check{\phi} &= \check{\psi} = -|\check{\psi}| \\ \partial_t \check{\psi} &= -\mathring{\psi} \check{\chi} - \mathring{\chi} \check{\psi} - \left(\frac{d^2 \mathcal{V}}{d\phi^2}\right) \check{\phi} \\ 2\partial_t \check{\chi}_{(bd)} - 2D_{(d}\check{a}_{b)} &= 2\check{E}_{bd} - \frac{4}{3} \mathring{\psi} h_{bd} \check{\psi} - \frac{4}{3} \mathring{\chi} \check{\chi}_{(bd)} \\ \partial_t \check{a}_c - D^p \check{\chi}_{(cp)} &= \left(\frac{2}{3} \mathring{\chi} + \frac{2}{\hat{\psi}} \frac{d^{\hat{\mathcal{V}}}}{d\phi}\right) \check{a}_c \\ \partial_t \check{E}_{bd} - D_a \check{B}_{p(d} \varepsilon_b)^{pa} &= -\frac{1}{3} \mathring{\chi} \check{E}_{bd} - \frac{1}{2} \mathring{\psi}^2 (\mathring{\chi}^{ST})_{bd} \\ \partial_t \check{B}_{bd} - D_a \check{E}_{p(b} \varepsilon_d)^{ap} &= -\frac{1}{3} \mathring{\chi} \check{B}_{bd} \\ \partial_t \check{B}_{bd} &= \delta_t^\mu \check{a}_b - \mathring{e}_c^\mu \check{\chi}_b{}^c - \frac{1}{3} \mathring{\chi} \check{e}_b{}^\mu \\ \partial_t \check{\gamma}^a{}_{bd} &= -\mathring{\gamma}^a{}_{bp} \check{\chi}_d{}^p - \frac{1}{3} \mathring{\chi} \check{\gamma}^a{}_{bd} + \check{B}_{dp} \varepsilon^{pa}{}_b + \frac{1}{3} \mathring{\chi} \delta^a_d \check{a}_b - \frac{1}{3} \mathring{\chi} h_{bd} \check{a}^a \end{aligned}$$

EKGF sy

Stability ana

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Analysis of the eigenvalues and stability results

• The characteristic polynomial of $\mathbf{\mathring{B}}(t)$:

$$\begin{split} \lambda \bigg[\lambda^5 + 5\mathring{\chi}\lambda^4 - \left(4\mathring{\psi}^2 - \frac{28}{3}\mathring{\chi}^2 - \mathring{\mathcal{V}}'' \right) \lambda^3 - \left(\frac{32}{3}\mathring{\psi}^2 - \frac{208}{27}\mathring{\chi}^2 - 4\mathring{\mathcal{V}}'' \right) \mathring{\chi}\lambda^2 \\ &- \left(\frac{64}{9}\mathring{\psi}^2 - \frac{64}{27}\mathring{\chi}^2 - \frac{16}{3}\mathring{\mathcal{V}}'' \right) \mathring{\chi}^2 \lambda + \frac{64}{27}\mathring{\chi}^3\mathring{\mathcal{V}}'' \bigg] \times \left[\lambda^2 + \frac{5}{3}\mathring{\chi}\lambda + \mathring{\psi}^2 + \frac{4}{9}\mathring{\chi}^2 \right]^3 \\ &\times \left[\lambda - \frac{2}{3}\frac{\left(3\mathring{\mathcal{V}}' + \mathring{\chi}\mathring{\psi} \right)}{\mathring{\psi}} \right]^3 \left[\lambda + \frac{1}{3}\mathring{\chi} \right]^{23}. \end{split}$$

Some roots:

$$\lambda_0 = 0, \quad \lambda_1 = -\frac{1}{3}\dot{\chi}(t), \quad \lambda_2 = \frac{2}{3}\frac{\left(3\mathcal{V}'(\dot{\phi}) + \dot{\chi}\dot{\psi}\right)}{\dot{\psi}}.$$

• Negativity of λ_1 and λ_2 :

 $\dot{\chi}(t) > 0 \Rightarrow$ Ever expanding KGRW spacetime

$$\mathring{\mathcal{V}}'(\mathring{\phi}) > rac{\mathring{\chi}|\psi|}{3} > 0.$$

Analysis of the eigenvalues and stability results

• The characteristic polynomial of $\mathring{\mathbf{B}}(t)$:

$$\begin{split} \lambda & \left[\lambda^5 + 5 \mathring{\chi} \lambda^4 - \left(4 \mathring{\psi}^2 - \frac{28}{3} \mathring{\chi}^2 - \mathring{\mathcal{V}}'' \right) \lambda^3 - \left(\frac{32}{3} \mathring{\psi}^2 - \frac{208}{27} \mathring{\chi}^2 - 4 \mathring{\mathcal{V}}'' \right) \mathring{\chi} \lambda^2 \\ & - \left(\frac{64}{9} \mathring{\psi}^2 - \frac{64}{27} \mathring{\chi}^2 - \frac{16}{3} \mathring{\mathcal{V}}'' \right) \mathring{\chi}^2 \lambda + \frac{64}{27} \mathring{\chi}^3 \mathring{\mathcal{V}}'' \right] \times \left[\lambda^2 + \frac{5}{3} \mathring{\chi} \lambda + \mathring{\psi}^2 + \frac{4}{9} \mathring{\chi}^2 \right]^3 \\ & \times \left[\lambda - \frac{2}{3} \frac{\left(3 \mathring{\mathcal{V}}' + \mathring{\chi} \mathring{\psi} \right)}{\mathring{\psi}} \right]^3 \left[\lambda + \frac{1}{3} \mathring{\chi} \right]^{23}. \end{split}$$

Some roots:

$$\lambda_0=0, \quad \lambda_1=-rac{1}{3} \mathring{\chi}(t), \quad \lambda_2=rac{2}{3} rac{\left(3\mathcal{V}'(\mathring{\phi})+\mathring{\chi}\mathring{\psi}
ight)}{\mathring{\psi}}.$$

Negativity of λ₁ and λ₂:

 $\dot{\chi}(t) > 0 \Rightarrow$ Ever expanding KGRW spacetime $\dot{\mathcal{V}}'(\dot{\phi}) > \frac{\dot{\chi}|\dot{\psi}|}{3} > 0.$

(日) (四) (日) (日) (日)

Zero eigenvalue

- $\lambda_0 = 0$: Solutions that tend asymptotically to constant values.
 - 1. Wave equation into 2 first-order equations: $\check{\phi} = \phi(t)$, asymptotically converges to the constant value $\check{\phi}(0) = \check{\phi}_0$.
 - 2. ϕ used to foliate the spacetime, and by comparing/similarity with Reula work (no zero eigenvalue).
- Check explicitly:
 - 1. Find the eigenvector $\mathbf{\breve{u}}^{(0)}$ (general)
 - 2. check that $\mathbf{\mathring{B}}'(t)\mathbf{\widecheck{u}}^{(0)} = 0$, with $(\mathbf{\widecheck{u}}^{(0)})^T = [1, 0, ..., 0]$
- 38 × 38 matrix!!

- Information about $\mathcal{V}'(\phi)$ cannot be deduced from a direct computation of the roots of the remaining fifth-order polynomial.
- Alternatively, we will make use of a result from the so-called *Routh-Hurwitz* problem.

Zero eigenvalue

- $\lambda_0 = 0$: Solutions that tend asymptotically to constant values.
 - 1. Wave equation into 2 first-order equations: $\check{\phi} = \phi(t)$, asymptotically converges to the constant value $\check{\phi}(0) = \check{\phi}_0$.
 - 2. ϕ used to foliate the spacetime, and by comparing/similarity with Reula work (no zero eigenvalue).
- Check explicitly:
 - 1. Find the eigenvector $\breve{u}^{(0)}$ (general
 - 2. check that $\mathbf{B}'(t)\mathbf{\breve{u}}^{(0)} = 0$, with $(\mathbf{\breve{u}}^{(0)})^T = [1, 0, ..., 0]$
- 38 × 38 matrix!!

- Information about $\mathcal{V}'(\phi)$ cannot be deduced from a direct computation of the roots of the remaining fifth-order polynomial.
- Alternatively, we will make use of a result from the so-called *Routh-Hurwitz* problem.

Zero eigenvalue

- $\lambda_0 = 0$: Solutions that tend asymptotically to constant values.
 - 1. Wave equation into 2 first-order equations: $\check{\phi} = \phi(t)$, asymptotically converges to the constant value $\check{\phi}(0) = \check{\phi}_0$.
 - 2. ϕ used to foliate the spacetime, and by comparing/similarity with Reula work (no zero eigenvalue).
- Check explicitly:
 - 1. Find the eigenvector $\breve{u}^{(0)}$ (general)
 - 2. check that $\mathbf{\mathring{B}}'(t)\mathbf{\widecheck{u}}^{(0)} = 0$, with $\left(\mathbf{\widecheck{u}}^{(0)}\right)^T = [1, 0, ..., 0]$
- 38 × 38 matrix!!

- Information about $\mathcal{V}''(\phi)$ cannot be deduced from a direct computation of the roots of the remaining fifth-order polynomial.
- Alternatively, we will make use of a result from the so-called *Routh-Hurwitz* problem.

Zero eigenvalue

- $\lambda_0 = 0$: Solutions that tend asymptotically to constant values.
 - 1. Wave equation into 2 first-order equations: $\check{\phi} = \phi(t)$, asymptotically converges to the constant value $\check{\phi}(0) = \check{\phi}_0$.
 - 2. ϕ used to foliate the spacetime, and by comparing/similarity with Reula work (no zero eigenvalue).
- Check explicitly:
 - 1. Find the eigenvector $\breve{u}^{(0)}$ (general)
 - 2. check that $\mathbf{\mathring{B}}'(t)\mathbf{\widecheck{u}}^{(0)} = 0$, with $\left(\mathbf{\widecheck{u}}^{(0)}\right)^T = [1, 0, ..., 0]$
- 38 × 38 matrix!!

- Information about $\mathcal{V}''(\phi)$ cannot be deduced from a direct computation of the roots of the remaining fifth-order polynomial.
- Alternatively, we will make use of a result from the so-called Routh-Hurwitz problem.

 A real polynomial with roots whose real part is negative is called a *Hurwitz* polynomial and, for those, the following result holds:

Theorem (Liénard-Chipart)

Let $f(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + ... + a_n (a_0 > 0)$, be a polynomial with real coefficients. Then the following statements are equivalent:

- (i) the polynomial is a Hurwitz polynomial;
- (ii) The coefficients of f are positive and $\delta_2 > 0, \delta_4 > 0, ..., \delta_n$, n even;
- (iii) The coefficients of f are positive and $\delta_1 > 0, \delta_3 > 0, ..., \delta_n$, n odd,

where the Hurwitz determinants are defined by

$$\delta_0 := 1, \quad \delta_l := det \begin{pmatrix} a_1 & a_3 & a_5 & \cdots & a_{2l-1} \\ 1 & a_2 & a_4 & \cdots & a_{2l-2} \\ 0 & a_1 & a_3 & \cdots & a_{2l-3} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_l \end{pmatrix} \quad (l = 1, ..., n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

d EKGF sys

Stability analy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- For the second order polynomial the Hurwitz determinants will not give any new condition.
- · Now, the positivity of the coefficients of the fifth order polynomial implies

$$\mathcal{\dot{V}}^{\prime\prime} > 0,$$

• while $\delta_2 > 0$ and $\delta_4 > 0$ give

$$\mathring{\mathcal{V}}'' > rac{28}{3} \left(\mathring{\psi}^2(t) - rac{263}{63} \mathring{\chi}^2(t)
ight)$$

and

$$\begin{split} (\mathring{\mathcal{V}}'')^3 + \frac{4}{3} \left(7\mathring{\chi}^2 - 10\mathring{\psi}^2 \right) \left(\mathring{\mathcal{V}}'' \right)^2 + \frac{4}{3} \left(31\mathring{\psi}^4 + 4\mathring{\chi}^4 - 80\mathring{\chi}^2\mathring{\psi}^2 \right) \mathring{\mathcal{V}}'' \\ + \frac{112}{3} \left(\frac{196}{243} \mathring{\chi}^6 - \frac{280}{81} \mathring{\psi}^2 \mathring{\chi}^4 + \frac{31}{7} \mathring{\psi}^4 \mathring{\chi}^2 - \mathring{\psi}^6 \right) > 0. \end{split}$$

 The conditions are given in terms of solutions of non-linear evolution ODEs for the background.

Theorem (Main theorem)

Let ϕ be a homogeneous smooth real scalar field with a self-interacting potential $\mathcal{V}(\phi)$ in an expanding Robertson-Walker spacetime and subject to the non-linear Klein-Gordon equation with a potential satisfying the above conditions. Then the KGRW solution is stable in the sense that, given any initial data for small non-linear perturbations $\mathbf{\check{u}}_0$, whose $\|\mathbf{\check{u}}\|_{H^k(\mathbb{T}^3)}$ norm is finite, and for k = 5 there exists $\varepsilon_0 > 0$, such that for all $0 < \varepsilon \le \varepsilon_0$, a solution to the non-linear perturbations exists for all times and decays exponentially to zero or converges to constant values.

Some final comments

- With the appropriate modifications in the linearization procedure and inserting a cosmological constant, the symmetric hyperbolic system under study can be used to investigate the non-linear stability of de Sitter spacetime.
- These results can be usefull when considering numerical evolution simulations, since they give conditions for exponential decay and could therefore be used to test the consistency of the numerical steps.

Theorem (Main theorem)

Let ϕ be a homogeneous smooth real scalar field with a self-interacting potential $\mathcal{V}(\phi)$ in an expanding Robertson-Walker spacetime and subject to the non-linear Klein-Gordon equation with a potential satisfying the above conditions. Then the KGRW solution is stable in the sense that, given any initial data for small non-linear perturbations $\mathbf{\check{u}}_0$, whose $\|\mathbf{\check{u}}\|_{H^k(\mathbb{T}^3)}$ norm is finite, and for k = 5 there exists $\varepsilon_0 > 0$, such that for all $0 < \varepsilon \le \varepsilon_0$, a solution to the non-linear perturbations exists for all times and decays exponentially to zero or converges to constant values.

Some final comments

- With the appropriate modifications in the linearization procedure and inserting a cosmological constant, the symmetric hyperbolic system under study can be used to investigate the non-linear stability of de Sitter spacetime.
- These results can be usefull when considering numerical evolution simulations, since they give conditions for exponential decay and could therefore be used to test the consistency of the numerical steps.