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Asymptotic stability of spatially homogeneous and isotropic spacetimes

The Approach

• Question: do small perturbations of a given solution asymptotically decay to the
background solution?

• Within this approach: analyse decay of non-linear perturbations from the
knowledge of linear perturbations.

Hyperbolic reduction of EFEs: FOSH systems

• Hyperbolic reductions: The Cauchy problem for the EFEs can be reduced to
questions about the Cauchy problem for hyperbolic equations —gauge fixing

• EFEs in vacuum as a first-order quasi-linear symmetric hyperbolic system –(H.
Friedrich CQG96)

A0∂t u− Aj (u)Dj u = B(u)u,

• Generalization to the Einstein-Euler system using Lagrangian description of the
fluid flow and Fermi transport –(H. Friedrich PRD98)

Cosmological context

• Exponential decay of small non-linear perturbations of FLRW backgrounds –(O.
Reula PRD99)

• Einstein-scalar field system: Exponential decay of non-linear perturbations of
Klein-Gordon-Robertson-Walker backgrounds (KGRW).
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Scalar field and Klein-Gordon equation

• Scalar field φ ∈ C∞ (M). Energy-momentum tensor:

T = ψ ⊗ψ −
»

1

2
‖ψ‖2

g + V(φ)

–
g

ψ := (∇φ)

• Fix the vector-field
ψ ≡ αe0 ⇒ ψa = αδa

0

and ‖ψ‖2 = −α2 ⇒ α = ±
p
−‖ψ‖2.

• For a future-oriented ψ, we must choose α to be positive. In a coordinate basis:

ψµ = αe µ
0 , e µ

0 =
∇µφp
−‖ψ‖2

.

• The divergence of the stress-energy tensor gives the evolution equation:

Nb (∇aTab) = 0⇒ Le0
α+ χα =

dV
dφ

,
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Lagrangian description and Fermi transport

• The Lagrangian description: the timelike vector of the orthonormal frame follow
the matter flow lines. Introduce coordinates (t, x) such that

e0 = ∂t , e µ
0 = δµt .

• With this choice: the lapse function is fixed to unity and Dµφ = 0

• The timelike coframe in terms of the natural cobasis: θ0 = dt + βj dx j

• Since we are using the scalar field to foliate the spacetime

Dµφ = 0⇒ βj = 0⇒ χ[ab] = 0.

• With this choice

∂tφ(t) = ψ(x, t) := Naψa = −α < 0, for φ > 0 (1)

∂tψ = −ψχ−
dV
dφ

. (2)

• The remaining frame components are choosen to be Fermi propagated along e0

γa
b0 = 0
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Stability approach

• Consider a sequence of smooth initial data uε for the EFEs satisfying the
constraints equations on a Cauchy hypersurface Σ.

• Depend continously on the parameter ε, such that, ε→ 0 renders the reference
solution ů.

• Write the full solution to the EFEs as the Ansatz

uε = ů + εŭε,

ŭε is a (non-linear) perturbation whose size is controlled by the parameter ε.

• Also
B(̊u + εŭε) = B̊(̊u) + εB̆(ŭ, ε)

• Initial value problem for the non-linear perturbations:

∂t ŭ =
h
Åj + εĂj (ŭ, ε)

i
Dj ŭ +

h
B̊(t) + εB̆(ŭ, ε)

i
ŭ,

ŭ(x, 0) = ŭ0(x),
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Definitions and Stability Theorem

• Stability results for the case where the coefficient of the non-principal part for the
linearized system (ε = 0) is a constant matrix are well-known –(Kreiss & Lorenz
Acta Numerica7 98).

• These follow from the existence of a negative real part of the eigenvalues for the
non-principal part of the linearized system (ε = 0).

• These methods are easily generalized to systems of the type considered here
where B̊ is not constant but depends smoothly on time –(O. Reula PRD99).

• A procedure to analyse stability in the case of systems with vanishing eigenvalues
has been given in –(Kreiss, Ortiz & Reula J. Diff. Eq. 98):

u(x, t) = u(0)(t) + u(λ)(x, t), 〈u(0), u(λ)〉L2(Tn) = 0

one can write the system as

∂t u(0) = εQ̂
“

Ăj Dj + B̆′
”

u(λ) (3)

∂t u(λ) =
“

Åj Dj + B̊′
”

u(λ) + ε
“
Î − Q̂

”“
Ăj Dj + B̆′

”
u(λ) (4)

with initial data u(0)(0) = u
(0)
0 and u(λ)(0, x) = u

(λ)
0 (x)
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Klein-Gordon-Robertson-Walker spacetime background

• Metric

ds2 = −dt2 +
a2(t)

1 + k
4

r2

3X
j=1

dx2
j ,

• Metric is conformally flat:
Ebd = Bbd = 0.

• Foliates the spacetime with the surfaces of constant t“
χST

”
bd

=
“
χA
”

bd
= 0, ac = 0.

• χ(t) = 3ȧ/a

• Friedmann constraint equation for a scalar field

χ2(t) = −
k

a2
+

2

3
ψ2(t)− 2V(φ),

• gauge conditions for the frame are satisfied if

e µ
0 = δµt , e µ

a =

„
1 +

k

4
r

«
a−1δµj .

,



Introduction Scalar field EKGF system Stability analysis KGRW background and linearized system Stability results

Linearized system

• Compute d ŭε

dε

˛̨̨
ε=0

and drop all (non-linear) terms of coupled perturbations.

• Linearized system

∂t φ̆ = ψ̆ = −|ψ̆|

∂t ψ̆ = −ψ̊χ̆− χ̊ψ̆ −
 

˚d2V
dφ2

!
φ̆

2∂t χ̆(bd) − 2D(d ăb) = 2Ĕbd −
4

3
ψ̊hbd ψ̆ −

4

3
χ̊χ̆(bd)

∂t ăc − Dpχ̆(cp) =

 
2

3
χ̊+

2

ψ̊

d̊V
dφ

!
ăc

∂t Ĕbd − DaB̆p(dε
pa

b)
= −

1

3
χ̊Ĕbd −

1

2
ψ̊2(χ̊ST )bd

∂t B̆bd − DaĔp(bε
ap

d)
= −

1

3
χ̊B̆bd

∂t ĕ µ
b = δµt ăb − e̊ µ

c χ̆ c
b −

1

3
χ̊ĕ µ

b

∂t γ̆
a

bd = −γ̊a
bpχ̆

p
d −

1

3
χ̊γ̆a

bd + B̆dpε
pa

b +
1

3
χ̊δa

d ăb −
1

3
χ̊hbd ăa
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Analysis of the eigenvalues and stability results

• The characteristic polynomial of B̊(t):

λ

»
λ5 + 5χ̊λ4 −

„
4ψ̊2 −

28

3
χ̊2 − V̊ ′′

«
λ3 −

„
32

3
ψ̊2 −

208

27
χ̊2 − 4V̊ ′′

«
χ̊λ2

−
„

64

9
ψ̊2 −

64

27
χ̊2 −

16

3
V̊ ′′
«
χ̊2λ+

64

27
χ̊3V̊ ′′

–
×
»
λ2 +

5

3
χ̊λ+ ψ̊2 +

4

9
χ̊2

–3

×

24λ− 2

3

“
3V̊ ′ + χ̊ψ̊

”
ψ̊

353 »
λ+

1

3
χ̊

–23

.

• Some roots:

λ0 = 0, λ1 = −
1

3
χ̊(t), λ2 =

2

3

“
3V ′(φ̊) + χ̊ψ̊

”
ψ̊

.

• Negativity of λ1 and λ2:

χ̊(t) > 0⇒ Ever expanding KGRW spacetime

V̊ ′(φ̊) >
χ̊|ψ̊|

3
> 0.
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Zero eigenvalue

• λ0 = 0: Solutions that tend asymptotically to constant values.

1. Wave equation into 2 first-order equations: φ̆ = φ(t), asymptotically converges to the

constant value φ̆(0) = φ̆0.
2. φ used to foliate the spacetime, and by comparing/similarity with Reula work (no zero

eigenvalue).

• Check explicitly:

1. Find the eigenvector ŭ(0) (general)

2. check that B̊′(t)ŭ(0) = 0, with
“

ŭ(0)
”T

= [1, 0, ..., 0]

• 38× 38 matrix!!

Fifth-order polynomial

• Information about V ′′(φ̊) cannot be deduced from a direct computation of the
roots of the remaining fifth-order polynomial.

• Alternatively, we will make use of a result from the so-called Routh-Hurwitz
problem.
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2. check that B̊′(t)ŭ(0) = 0, with
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ŭ(0)
”T

= [1, 0, ..., 0]

• 38× 38 matrix!!

Fifth-order polynomial

• Information about V ′′(φ̊) cannot be deduced from a direct computation of the
roots of the remaining fifth-order polynomial.

• Alternatively, we will make use of a result from the so-called Routh-Hurwitz
problem.



Introduction Scalar field EKGF system Stability analysis KGRW background and linearized system Stability results

• A real polynomial with roots whose real part is negative is called a Hurwitz
polynomial and, for those, the following result holds:

Theorem (Liénard-Chipart)
Let f (z) = a0zn + a1zn−1 + a2zn−2 + ...+ an (a0 > 0), be a polynomial with real
coefficients. Then the following statements are equivalent:

(i) the polynomial is a Hurwitz polynomial;

(ii) The coefficients of f are positive and δ2 > 0, δ4 > 0, ..., δn, n even;

(iii) The coefficients of f are positive and δ1 > 0, δ3 > 0, ..., δn, n odd,

where the Hurwitz determinants are defined by

δ0 := 1, δl := det

0BBBBB@
a1 a3 a5 · · · a2l−1

1 a2 a4 · · · a2l−2

0 a1 a3 · · · a2l−3

...
...

...
...

0 0 0 · · · al

1CCCCCA (l = 1, ..., n).
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• For the second order polynomial the Hurwitz determinants will not give any new
condition.

• Now, the positivity of the coefficients of the fifth order polynomial implies

V̊ ′′ > 0,

• while δ2 > 0 and δ4 > 0 give

V̊ ′′ >
28

3

„
ψ̊2(t)−

263

63
χ̊2(t)

«
and

(V̊ ′′)3 +
4

3

“
7χ̊2 − 10ψ̊2

”“
V̊ ′′
”2

+
4

3

“
31ψ̊4 + 4χ̊4 − 80χ̊2ψ̊2

”
V̊ ′′

+
112

3

„
196

243
χ̊6 −

280

81
ψ̊2χ̊4 +

31

7
ψ̊4χ̊2 − ψ̊6

«
> 0.

• The conditions are given in terms of solutions of non-linear evolution ODEs for
the background.
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Theorem (Main theorem)
Let φ be a homogeneous smooth real scalar field with a self-interacting potential V(φ)
in an expanding Robertson-Walker spacetime and subject to the non-linear
Klein-Gordon equation with a potential satisfying the above conditions. Then the
KGRW solution is stable in the sense that, given any initial data for small non-linear
perturbations ŭ0, whose ‖ŭ‖Hk (T3) norm is finite, and for k = 5 there exists ε0 > 0,
such that for all 0 < ε ≤ ε0, a solution to the non-linear perturbations exists for all
times and decays exponentially to zero or converges to constant values.

Some final comments

• With the appropriate modifications in the linearization procedure and inserting a
cosmological constant, the symmetric hyperbolic system under study can be used
to investigate the non-linear stability of de Sitter spacetime.

• These results can be usefull when considering numerical evolution simulations,
since they give conditions for exponential decay and could therefore be used to
test the consistency of the numerical steps.
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