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Abstract

In any static spacetime the quasilocal Tolman mass contained
within a volume can be reduced to a Gauss-like surface integral
involving the flux of a suitably defined generalized surface gravity.

By introducing some basic thermodynamics and invoking the Unruh
effect, one can then develop elementary bounds on the quasilocal
entropy that are very similar in spirit to the holographic bound, and
closely related to entanglement entropy.



Tolman mass

In any static spacetime, with the following metric

ds2 = −e−2Ψdt2 + gijdx idx j , (1)

the Tolman mass contained in a region Ω is defined [1]

mT (Ω) =

∫
Ω

√
−g4

(
T 0

0 − T i
i

)
d3x , (2)

where g4 is the determinant of the (3 + 1)-dimensional metric.
Then the Einstein equations imply

mT (Ω) =
1

4π

∫
Ω

√
−g4 R0

0 d3x . (3)

Which is a purely geometrical statement.



Now, using the old Landau-Liftshitz [2] result,

R0
0 =

1√
−g4

∂i

(√
−g4 g0a Γi

a0

)
, (4)

we can rewrite mT (Ω).

Furthermore, consider the following FIDOs, V a =
(√
|g00|, 0, 0, 0

)
,

and its acceleration

Aa = V b∇bV
a = V 0 (∂0V

a + Γa
c0V

c) ,

=
√
|g00| Γa

00

√
|g00| = |g00| Γa

00. (5)



Then

mT (Ω) =
1

4π

∫
Ω
∂i

(√
−g4 Ai

)
d3x ,

=
1

4π

∫
Ω
∂i

(√
g3 e−Ψ Ai

)
d3x . (6)

And using Stoke’s theorem, we have

mT (Ω) =
1

4π

∫
∂Ω

(
e−Ψ Ai

)
n̂i
√

g2 d2x . (7)



Generalized surface gravity

Define a (generalized) surface gravity 3-vector by

κi = e−Ψ Ai , (8)

then its norm,

κ =
√

gij κiκj = e−Ψ
√

gij AiAj , (9)

is just the usual surface gravity; the redshifted 4-acceleration of
the FIDOs.



Now, the Tolman mass can be rephrased as

mT =
1

4π

∫
∂Ω
~κ · n̂ dA ≤ 1

4π
κ̄(∂Ω) A (∂Ω). (10)

With

κ̄(∂Ω) the average surface gravity,

A (∂Ω) the total area,

no black hole regions, for now.



Entropy bounds

Consider the Euler (Gibbs-Duhem) relation for the entropy
of matter (No black holes, no horizons),

s =
ρ+ p − µ n

T
, (11)

where we have set p = 1
3 tr{Tij} and ρ = T00, as usual. The total

entropy is

S(Ω) =

∫
Ω

√
g3
ρ+ p + µ n

T
d3x . (12)



Now, due to the Tolman [3]

T
√
−g00 = T∞, (13)

and Tolman-Klein [4],

µ
√
−g00 = µ∞, (14)

equilibrium conditions, and with g00 → 1 at spatial infinity,
we have

S(Ω) =
1

T∞

∫
Ω

√
−g4 (ρ+ p) d3x − µ∞

T∞
N. (15)



Since thermodynamical stability requires µ ≥ 0, we have

S(Ω) ≤ 1

T∞

∫
Ω

√
−g4 (ρ+ p) d3x ,

≤ 1

T∞

∫
Ω

√
−g4 (ρ+ 3p) d3x ,

≤ mT (Ω)

T∞
, (16)

where we have assumed p ≥ 0. Therefore,

S(Ω) ≤ 1

4πT∞
κ̄(∂Ω) A (∂Ω). (17)



Finally, we can invoke the Unruh effect [5] to assert that an
observer on ∂Ω will measure a minimum local Temperature

T (x) ≥ TUnruh(x) =
||A(x)||

2π
, (18)

which when redshifted to infinity implies

T∞ ≥ max

{
κ(x)

2π

}
. (19)



So the equilibrium temperature of the object confined inside ∂Ω
satisfies

T∞ ≥
κ̄(∂Ω)

2π
. (20)

Hence

S(Ω) ≤ A (∂Ω)

2
. (21)

We have used very mild assumptions. This bound relates to

The holographic bound, S(Ω) ≤ 1
4A [6].

Bekenstein bound, S(Ω) ≤ 2π E (Ω) R(Ω) [7].

Srednicki’s entanglement entropy [8].



Spherical symmetry

As a consistency check, consider a static spherically symmetric ge-
ometry,

ds2 = − e−Φ(r)

[
1− 2 m(r)

r

]
dt2

+
dr2

1− 2 m(r)/r
+ r2

(
dθ2 + sin2 θdφ2

)
. (22)

With this particular set of coordinates, assuming asymptotic flatness
and normalizing Φ(∞) = 0,

1
√
−g4 =

√
−g00

√
g3 = e−Φr2 sin θ → 4π r2e−Φ.

2 Killing horizon: 2 m(rH) = rH .

3 Surface gravity, at the horizon: κH =
1−2 m′

H
2 rH

e−Φ.



Also, the four-acceleration of the FIDOs is

A(r) =
m(r)− r m′(r)

r2
√

1− 2 m(r)/r
− Φ′(r)

√
1− 2 m(r)

r
. (23)

Then, the generalized surface gravity takes the form

κ(r) =
√
−g00A(r) = e−Φ(r)

√
1− 2 m(r)/r A(r),

= e−Φ(r)

[
m(r)− r m′(r)

r2
− Φ′(r)

(
1− 2 m(r)

r

)]
.(24)

This is not the surface gravity of the black hole region, but rather
of the virtual sphere of radius r . Moreover, a calculation yields [9]

mT (r) = r2 κ(r). (25)



The entropy inequalities still carry through in essentially the same
way,

S(r) ≤ mT (r)

T∞
=
κ(r) r2

T∞
. (26)

Therefore, considering the FIDOs at radius r , the Unruh effect forces

T∞ ≥
κ(r)

2π
, (27)

so that
S(r) ≤ 2π r2. (28)

This bound is sub-optimal with respect to the Holographic
bound.

But it is extremely robust and easy to derive.



Discussion

We use very mild assumptions, plus

1 The Einstein equations,

2 The generalized surface gravity,

3 The Unruh effect,

to develop a number of bounds on the entropy, that are
very minimalist but closely related to

1 The holographic bound [6].

2 generalized 2nd law [7]

3 Bekenstein bound [7].

4 Srednicki’s entanglement entropy [8].
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